Spaces:
Sleeping
Sleeping
import os | |
import torch | |
from fastapi import FastAPI, HTTPException | |
from fastapi.responses import StreamingResponse | |
from pydantic import BaseModel, field_validator | |
from transformers import ( | |
AutoConfig, | |
pipeline, | |
AutoModelForSeq2SeqLM, | |
AutoTokenizer, | |
GenerationConfig, | |
StoppingCriteriaList | |
) | |
import boto3 | |
import uvicorn | |
import asyncio | |
from io import BytesIO | |
from transformers import pipeline | |
import json | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
AWS_REGION = os.getenv("AWS_REGION") | |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") | |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") | |
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION) | |
app = FastAPI() | |
class GenerateRequest(BaseModel): | |
model_name: str | |
input_text: str = "" | |
task_type: str | |
temperature: float = 1.0 | |
max_new_tokens: int = 200 | |
stream: bool = True | |
top_p: float = 1.0 | |
top_k: int = 50 | |
repetition_penalty: float = 1.0 | |
num_return_sequences: int = 1 | |
do_sample: bool = True | |
chunk_delay: float = 0.0 | |
stop_sequences: list[str] = [] | |
def model_name_cannot_be_empty(cls, v): | |
if not v: | |
raise ValueError("model_name cannot be empty.") | |
return v | |
def task_type_must_be_valid(cls, v): | |
valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"] | |
if v not in valid_types: | |
raise ValueError(f"task_type must be one of: {valid_types}") | |
return v | |
class S3ModelLoader: | |
def __init__(self, bucket_name, s3_client): | |
self.bucket_name = bucket_name | |
self.s3_client = s3_client | |
def _get_s3_uri(self, model_name): | |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}" | |
async def load_model_and_tokenizer(self, model_name): | |
s3_uri = self._get_s3_uri(model_name) | |
try: | |
config = AutoConfig.from_pretrained(s3_uri, local_files_only=True) | |
model = AutoModelForSeq2SeqLM.from_pretrained(s3_uri, config=config, local_files_only=True) | |
tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=True) | |
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None: | |
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id | |
return model, tokenizer | |
except EnvironmentError: | |
try: | |
config = AutoConfig.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, config=config) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, config=config) | |
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None: | |
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id | |
model.save_pretrained(s3_uri) | |
tokenizer.save_pretrained(s3_uri) | |
return model, tokenizer | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error loading model: {e}") | |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client) | |
async def generate(request: GenerateRequest): | |
try: | |
model_name = request.model_name | |
input_text = request.input_text | |
task_type = request.task_type | |
temperature = request.temperature | |
max_new_tokens = request.max_new_tokens | |
stream = request.stream | |
top_p = request.top_p | |
top_k = request.top_k | |
repetition_penalty = request.repetition_penalty | |
num_return_sequences = request.num_return_sequences | |
do_sample = request.do_sample | |
chunk_delay = request.chunk_delay | |
stop_sequences = request.stop_sequences | |
model, tokenizer = await model_loader.load_model_and_tokenizer(model_name) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
generation_config = GenerationConfig( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
do_sample=do_sample, | |
num_return_sequences=num_return_sequences, | |
) | |
return StreamingResponse( | |
stream_text(model, tokenizer, input_text, | |
generation_config, stop_sequences, | |
device, chunk_delay), | |
media_type="text/plain" | |
) | |
except Exception as e: | |
raise HTTPException(status_code=500, | |
detail=f"Internal server error: {str(e)}") | |
async def stream_text(model, tokenizer, input_text, | |
generation_config, stop_sequences, | |
device, chunk_delay, max_length=2048): | |
encoded_input = tokenizer(input_text, | |
return_tensors="pt", | |
truncation=True, | |
max_length=max_length).to(device) | |
input_length = encoded_input["input_ids"].shape[1] | |
remaining_tokens = max_length - input_length | |
if remaining_tokens <= 0: | |
yield "" | |
generation_config.max_new_tokens = min( | |
remaining_tokens, generation_config.max_new_tokens | |
) | |
def find_stop(output_text, stop_sequences): | |
for seq in stop_sequences: | |
if seq in output_text: | |
last_index = output_text.rfind(seq) | |
return last_index + len(seq) | |
return -1 | |
output_text = "" | |
while True: | |
outputs = model.generate( | |
**encoded_input, | |
do_sample=generation_config.do_sample, | |
max_new_tokens=generation_config.max_new_tokens, | |
temperature=generation_config.temperature, | |
top_p=generation_config.top_p, | |
top_k=generation_config.top_k, | |
repetition_penalty=generation_config.repetition_penalty, | |
num_return_sequences=generation_config.num_return_sequences, | |
output_scores=True, | |
return_dict_in_generate=True, | |
) | |
new_text = tokenizer.decode(outputs.sequences[0][len(encoded_input["input_ids"][0]):], skip_special_tokens=True) | |
output_text += new_text | |
stop_index = find_stop(output_text, stop_sequences) | |
if stop_index != -1: | |
final_output = output_text[:stop_index] | |
chunked_output = [final_output[i:i+10] for i in range(0, len(final_output), 10)] | |
for chunk in chunked_output: | |
yield json.dumps({"text": chunk, "is_end": False}) + "\n" | |
await asyncio.sleep(chunk_delay) | |
yield json.dumps({"text": "", "is_end": True}) + "\n" | |
break | |
else: | |
chunked_output = [new_text[i:i+10] for i in range(0, len(new_text), 10)] | |
for chunk in chunked_output: | |
yield json.dumps({"text": chunk, "is_end": False}) + "\n" | |
await asyncio.sleep(chunk_delay) | |
if len(output_text) >= generation_config.max_new_tokens: | |
chunked_output = [output_text[i:i+10] for i in range(0, len(output_text), 10)] | |
for chunk in chunked_output: | |
yield json.dumps({"text": chunk, "is_end": False}) + "\n" | |
await asyncio.sleep(chunk_delay) | |
yield json.dumps({"text": "", "is_end": True}) + "\n" | |
break | |
encoded_input = tokenizer(output_text, | |
return_tensors="pt", | |
truncation=True, | |
max_length=max_length).to(device) | |
async def generate_image(request: GenerateRequest): | |
try: | |
validated_body = request | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
image_generator = pipeline("text-to-image", | |
model=validated_body.model_name, | |
device=device) | |
image = image_generator(validated_body.input_text)[0] | |
img_byte_arr = BytesIO() | |
image.save(img_byte_arr, format="PNG") | |
img_byte_arr.seek(0) | |
return StreamingResponse(img_byte_arr, media_type="image/png") | |
except Exception as e: | |
raise HTTPException(status_code=500, | |
detail=f"Internal server error: {str(e)}") | |
async def generate_text_to_speech(request: GenerateRequest): | |
try: | |
validated_body = request | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
audio_generator = pipeline("text-to-speech", | |
model=validated_body.model_name, | |
device=device) | |
audio = audio_generator(validated_body.input_text)[0] | |
audio_byte_arr = BytesIO() | |
audio.save(audio_byte_arr) | |
audio_byte_arr.seek(0) | |
return StreamingResponse(audio_byte_arr, media_type="audio/wav") | |
except Exception as e: | |
raise HTTPException(status_code=500, | |
detail=f"Internal server error: {str(e)}") | |
async def generate_video(request: GenerateRequest): | |
try: | |
validated_body = request | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
video_generator = pipeline("text-to-video", | |
model=validated_body.model_name, | |
device=device) | |
video = video_generator(validated_body.input_text)[0] | |
video_byte_arr = BytesIO() | |
video.save(video_byte_arr) | |
video_byte_arr.seek(0) | |
return StreamingResponse(video_byte_arr, | |
media_type="video/mp4") | |
except Exception as e: | |
raise HTTPException(status_code=500, | |
detail=f"Internal server error: {str(e)}") | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) |