aws_test / app.py
Hjgugugjhuhjggg's picture
Update app.py
2957fb3 verified
raw
history blame
8.36 kB
import os
import logging
import time
from io import BytesIO
from typing import Union
from fastapi import FastAPI, HTTPException, Response, Request, UploadFile, File
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, ValidationError, field_validator
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
pipeline,
GenerationConfig,
StoppingCriteriaList
)
import boto3
from huggingface_hub import hf_hub_download
import soundfile as sf
import numpy as np
import torch
import uvicorn
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s")
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
class GenerateRequest(BaseModel):
model_name: str
input_text: str = ""
task_type: str
temperature: float = 1.0
max_new_tokens: int = 200
stream: bool = False
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
chunk_delay: float = 0.0
stop_sequences: list[str] = []
model_config = {"protected_namespaces": ()}
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
async def load_model_and_tokenizer(self, model_name):
s3_uri = self._get_s3_uri(model_name)
try:
logging.info(f"Trying to load {model_name} from S3...")
config = AutoConfig.from_pretrained(s3_uri)
model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config)
tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config)
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
logging.info(f"Loaded {model_name} from S3 successfully.")
return model, tokenizer
except EnvironmentError:
logging.info(f"Model {model_name} not found in S3. Downloading...")
try:
config = AutoConfig.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, config=config)
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, token=HUGGINGFACE_HUB_TOKEN)
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
logging.info(f"Downloaded {model_name} successfully.")
logging.info(f"Saving {model_name} to S3...")
model.save_pretrained(s3_uri)
tokenizer.save_pretrained(s3_uri)
logging.info(f"Saved {model_name} to S3 successfully.")
return model, tokenizer
except Exception as e:
logging.exception(f"Error downloading/uploading model: {e}")
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
app = FastAPI()
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
@app.post("/generate")
async def generate(request: Request, body: GenerateRequest):
try:
validated_body = GenerateRequest(**body.model_dump())
model, tokenizer = await model_loader.load_model_and_tokenizer(validated_body.model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
if validated_body.task_type == "text-to-text":
generation_config = GenerationConfig(
temperature=validated_body.temperature,
max_new_tokens=validated_body.max_new_tokens,
top_p=validated_body.top_p,
top_k=validated_body.top_k,
repetition_penalty=validated_body.repetition_penalty,
do_sample=validated_body.do_sample,
num_return_sequences=validated_body.num_return_sequences
)
async def stream_text():
input_text = validated_body.input_text
generated_text = ""
max_length = model.config.max_position_embeddings
while True:
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
input_length = encoded_input["input_ids"].shape[1]
remaining_tokens = max_length - input_length
if remaining_tokens <= 0:
break
generation_config.max_new_tokens = min(remaining_tokens, validated_body.max_new_tokens)
stopping_criteria = StoppingCriteriaList(
[lambda _, outputs: tokenizer.decode(outputs[0][-1], skip_special_tokens=True) in validated_body.stop_sequences] if validated_body.stop_sequences else []
)
output = model.generate(**encoded_input, generation_config=generation_config, stopping_criteria=stopping_criteria)
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
generated_text += chunk
yield chunk
time.sleep(validated_body.chunk_delay)
input_text = generated_text
if validated_body.stream:
return StreamingResponse(stream_text(), media_type="text/plain")
else:
generated_text = ""
async for chunk in stream_text():
generated_text += chunk
return {"result": generated_text}
elif validated_body.task_type == "text-to-image":
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
image = generator(validated_body.input_text)[0]
image_bytes = image.tobytes()
return Response(content=image_bytes, media_type="image/png")
elif validated_body.task_type == "text-to-speech":
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
audio = generator(validated_body.input_text)
audio_bytesio = BytesIO()
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
audio_bytes = audio_bytesio.getvalue()
return Response(content=audio_bytes, media_type="audio/wav")
elif validated_body.task_type == "text-to-video":
try:
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
video = generator(validated_body.input_text)
return Response(content=video, media_type="video/mp4")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")
else:
raise HTTPException(status_code=400, detail="Unsupported task type")
except HTTPException as e:
raise e
except ValidationError as e:
raise HTTPException(status_code=422, detail=e.errors())
except Exception as e:
logging.exception(f"An unexpected error occurred: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)