File size: 8,361 Bytes
f56cbc6
2957fb3
 
 
 
 
 
f56cbc6
2957fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f56cbc6
2957fb3
f56cbc6
 
 
 
2957fb3
 
f56cbc6
2957fb3
3a145aa
2957fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f56cbc6
2957fb3
f56cbc6
2957fb3
 
f56cbc6
2957fb3
 
f56cbc6
2957fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b88653d
2957fb3
e58c8bb
2957fb3
 
f56cbc6
2957fb3
 
f56cbc6
2957fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6a64dd
972e5ee
2957fb3
972e5ee
2957fb3
 
 
 
f56cbc6
2957fb3
 
3a145aa
972e5ee
f56cbc6
2957fb3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import logging
import time
from io import BytesIO
from typing import Union

from fastapi import FastAPI, HTTPException, Response, Request, UploadFile, File
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, ValidationError, field_validator
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    pipeline,
    GenerationConfig,
    StoppingCriteriaList
)
import boto3
from huggingface_hub import hf_hub_download
import soundfile as sf
import numpy as np
import torch
import uvicorn

logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s")

AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")

class GenerateRequest(BaseModel):
    model_name: str
    input_text: str = ""
    task_type: str
    temperature: float = 1.0
    max_new_tokens: int = 200
    stream: bool = False
    top_p: float = 1.0
    top_k: int = 50
    repetition_penalty: float = 1.0
    num_return_sequences: int = 1
    do_sample: bool = True
    chunk_delay: float = 0.0
    stop_sequences: list[str] = []

    model_config = {"protected_namespaces": ()}

    @field_validator("model_name")
    def model_name_cannot_be_empty(cls, v):
        if not v:
            raise ValueError("model_name cannot be empty.")
        return v

    @field_validator("task_type")
    def task_type_must_be_valid(cls, v):
        valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
        if v not in valid_types:
            raise ValueError(f"task_type must be one of: {valid_types}")
        return v

class S3ModelLoader:
    def __init__(self, bucket_name, s3_client):
        self.bucket_name = bucket_name
        self.s3_client = s3_client

    def _get_s3_uri(self, model_name):
        return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"

    async def load_model_and_tokenizer(self, model_name):
        s3_uri = self._get_s3_uri(model_name)
        try:
            logging.info(f"Trying to load {model_name} from S3...")
            config = AutoConfig.from_pretrained(s3_uri)
            model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config)
            tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config)

            if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
                tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id

            logging.info(f"Loaded {model_name} from S3 successfully.")
            return model, tokenizer
        except EnvironmentError:
            logging.info(f"Model {model_name} not found in S3. Downloading...")
            try:
                config = AutoConfig.from_pretrained(model_name)
                tokenizer = AutoTokenizer.from_pretrained(model_name, config=config)
                model = AutoModelForCausalLM.from_pretrained(model_name, config=config, token=HUGGINGFACE_HUB_TOKEN)

                if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
                    tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id

                logging.info(f"Downloaded {model_name} successfully.")
                logging.info(f"Saving {model_name} to S3...")
                model.save_pretrained(s3_uri)
                tokenizer.save_pretrained(s3_uri)
                logging.info(f"Saved {model_name} to S3 successfully.")
                return model, tokenizer
            except Exception as e:
                logging.exception(f"Error downloading/uploading model: {e}")
                raise HTTPException(status_code=500, detail=f"Error loading model: {e}")

app = FastAPI()

s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)

@app.post("/generate")
async def generate(request: Request, body: GenerateRequest):
    try:
        validated_body = GenerateRequest(**body.model_dump())
        model, tokenizer = await model_loader.load_model_and_tokenizer(validated_body.model_name)
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model.to(device)

        if validated_body.task_type == "text-to-text":
            generation_config = GenerationConfig(
                temperature=validated_body.temperature,
                max_new_tokens=validated_body.max_new_tokens,
                top_p=validated_body.top_p,
                top_k=validated_body.top_k,
                repetition_penalty=validated_body.repetition_penalty,
                do_sample=validated_body.do_sample,
                num_return_sequences=validated_body.num_return_sequences
            )

            async def stream_text():
                input_text = validated_body.input_text
                generated_text = ""
                max_length = model.config.max_position_embeddings

                while True:
                    encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
                    input_length = encoded_input["input_ids"].shape[1]
                    remaining_tokens = max_length - input_length

                    if remaining_tokens <= 0:
                        break

                    generation_config.max_new_tokens = min(remaining_tokens, validated_body.max_new_tokens)

                    stopping_criteria = StoppingCriteriaList(
                        [lambda _, outputs: tokenizer.decode(outputs[0][-1], skip_special_tokens=True) in validated_body.stop_sequences] if validated_body.stop_sequences else []
                    )

                    output = model.generate(**encoded_input, generation_config=generation_config, stopping_criteria=stopping_criteria)
                    chunk = tokenizer.decode(output[0], skip_special_tokens=True)
                    generated_text += chunk
                    yield chunk
                    time.sleep(validated_body.chunk_delay)
                    input_text = generated_text

            if validated_body.stream:
                return StreamingResponse(stream_text(), media_type="text/plain")
            else:
                generated_text = ""
                async for chunk in stream_text():
                    generated_text += chunk
                return {"result": generated_text}

        elif validated_body.task_type == "text-to-image":
            generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
            image = generator(validated_body.input_text)[0]
            image_bytes = image.tobytes()
            return Response(content=image_bytes, media_type="image/png")

        elif validated_body.task_type == "text-to-speech":
            generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
            audio = generator(validated_body.input_text)
            audio_bytesio = BytesIO()
            sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
            audio_bytes = audio_bytesio.getvalue()
            return Response(content=audio_bytes, media_type="audio/wav")

        elif validated_body.task_type == "text-to-video":
            try:
                generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
                video = generator(validated_body.input_text)
                return Response(content=video, media_type="video/mp4")
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")

        else:
            raise HTTPException(status_code=400, detail="Unsupported task type")

    except HTTPException as e:
        raise e
    except ValidationError as e:
        raise HTTPException(status_code=422, detail=e.errors())
    except Exception as e:
        logging.exception(f"An unexpected error occurred: {e}")
        raise HTTPException(status_code=500, detail="An unexpected error occurred.")


if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)