Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
import requests | |
import boto3 | |
from dotenv import load_dotenv | |
import os | |
import uvicorn | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import safetensors.torch | |
from fastapi.responses import StreamingResponse | |
from tqdm import tqdm | |
import re | |
load_dotenv() | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
AWS_REGION = os.getenv("AWS_REGION") | |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") | |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
s3_client = boto3.client( | |
's3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION | |
) | |
app = FastAPI() | |
class DownloadModelRequest(BaseModel): | |
model_name: str | |
pipeline_task: str | |
input_text: str | |
class S3DirectStream: | |
def __init__(self, bucket_name): | |
self.s3_client = boto3.client( | |
's3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION | |
) | |
self.bucket_name = bucket_name | |
def stream_from_s3(self, key): | |
try: | |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key) | |
return response['Body'] | |
except self.s3_client.exceptions.NoSuchKey: | |
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al descargar de S3: {e}") | |
def file_exists_in_s3(self, key): | |
try: | |
self.s3_client.head_object(Bucket=self.bucket_name, Key=key) | |
return True | |
except self.s3_client.exceptions.ClientError as e: | |
if e.response['Error']['Code'] == '404': | |
return False | |
raise HTTPException(status_code=500, detail=f"Error al verificar archivo en S3: {e}") | |
def load_model_from_stream(self, model_prefix): | |
try: | |
model_files = self.list_model_files(model_prefix) | |
if not model_files: | |
self.download_and_upload_to_s3(model_prefix) | |
return self.load_model_from_stream(model_prefix) | |
config_stream = self.stream_from_s3(f"{model_prefix}/config.json") | |
config_data = config_stream.read().decode("utf-8") | |
model_path = f"{model_prefix}/model.safetensors" | |
if self.file_exists_in_s3(model_path): | |
model_stream = self.stream_from_s3(model_path) | |
model = AutoModelForCausalLM.from_config(config_data) | |
model.load_state_dict(safetensors.torch.load_stream(model_stream)) | |
elif model_files: | |
model = AutoModelForCausalLM.from_config(config_data) | |
state_dict = {} | |
for file_name in model_files: | |
file_stream = self.stream_from_s3(f"{model_prefix}/{file_name}") | |
tmp = torch.load(file_stream, map_location="cpu") | |
state_dict.update(tmp) | |
model.load_state_dict(state_dict) | |
else: | |
raise HTTPException(status_code=500, detail="Modelo no encontrado") | |
return model | |
except HTTPException as e: | |
raise | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo: {e}") | |
def list_model_files(self, model_prefix): | |
try: | |
response = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=f"{model_prefix}/pytorch_model-") | |
model_files = [] | |
if 'Contents' in response: | |
for obj in response['Contents']: | |
if re.match(r"pytorch_model-\d+-of-\d+", obj['Key'].split('/')[-1]): | |
model_files.append(obj['Key'].split('/')[-1]) | |
return model_files | |
except Exception as e: | |
return None | |
def load_tokenizer_from_stream(self, model_prefix): | |
try: | |
tokenizer_path = f"{model_prefix}/tokenizer.json" | |
if self.file_exists_in_s3(tokenizer_path): | |
tokenizer_stream = self.stream_from_s3(tokenizer_path) | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream) | |
return tokenizer | |
else: | |
self.download_and_upload_to_s3(model_prefix) | |
return self.load_tokenizer_from_stream(model_prefix) | |
except HTTPException as e: | |
raise | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer: {e}") | |
def download_and_upload_to_s3(self, model_prefix): | |
urls = { | |
"pytorch_model.bin": f"https://huggingface.co/{model_prefix}/resolve/main/pytorch_model.bin", | |
"model.safetensors": f"https://huggingface.co/{model_prefix}/resolve/main/model.safetensors", | |
"tokenizer.json": f"https://huggingface.co/{model_prefix}/resolve/main/tokenizer.json", | |
"config.json": f"https://huggingface.co/{model_prefix}/resolve/main/config.json" | |
} | |
for filename, url in urls.items(): | |
try: | |
response = requests.get(url, stream=True) | |
response.raise_for_status() | |
self.s3_client.upload_fileobj(response.raw, self.bucket_name, f"{model_prefix}/{filename}") | |
except requests.exceptions.RequestException as e: | |
raise HTTPException(status_code=500, detail=f"Error al descargar {filename}: {e}") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al subir {filename} a S3: {e}") | |
async def predict(model_request: DownloadModelRequest): | |
try: | |
streamer = S3DirectStream(S3_BUCKET_NAME) | |
model = streamer.load_model_from_stream(model_request.model_name) | |
tokenizer = streamer.load_tokenizer_from_stream(model_request.model_name) | |
task = model_request.pipeline_task | |
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering", "text-to-speech", "text-to-image", "text-to-audio", "text-to-video"]: | |
raise HTTPException(status_code=400, detail="Pipeline task no soportado") | |
nlp_pipeline = pipeline(task, model=model, tokenizer=tokenizer) | |
input_text = model_request.input_text | |
outputs = nlp_pipeline(input_text) | |
if task in ["text-generation", "translation", "fill-mask", "sentiment-analysis", "question-answering"]: | |
return {"response": outputs} | |
elif task == "text-to-image": | |
s3_key = f"{model_request.model_name}/generated_image.png" | |
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="image/png") | |
elif task == "text-to-audio": | |
s3_key = f"{model_request.model_name}/generated_audio.wav" | |
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="audio/wav") | |
elif task == "text-to-video": | |
s3_key = f"{model_request.model_name}/generated_video.mp4" | |
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="video/mp4") | |
else: | |
raise HTTPException(status_code=400, detail="Tipo de tarea desconocido") | |
except HTTPException as e: | |
raise | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error inesperado: {str(e)}") | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) |