aws_test / app.py
Hjgugugjhuhjggg's picture
Update app.py
3a145aa verified
raw
history blame
7.64 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import requests
import boto3
from dotenv import load_dotenv
import os
import uvicorn
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
import safetensors.torch
from fastapi.responses import StreamingResponse
from tqdm import tqdm
import re
load_dotenv()
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
app = FastAPI()
class DownloadModelRequest(BaseModel):
model_name: str
pipeline_task: str
input_text: str
class S3DirectStream:
def __init__(self, bucket_name):
self.s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
self.bucket_name = bucket_name
def stream_from_s3(self, key):
try:
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
return response['Body']
except self.s3_client.exceptions.NoSuchKey:
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al descargar de S3: {e}")
def file_exists_in_s3(self, key):
try:
self.s3_client.head_object(Bucket=self.bucket_name, Key=key)
return True
except self.s3_client.exceptions.ClientError as e:
if e.response['Error']['Code'] == '404':
return False
raise HTTPException(status_code=500, detail=f"Error al verificar archivo en S3: {e}")
def load_model_from_stream(self, model_prefix):
try:
model_files = self.list_model_files(model_prefix)
if not model_files:
self.download_and_upload_to_s3(model_prefix)
return self.load_model_from_stream(model_prefix)
config_stream = self.stream_from_s3(f"{model_prefix}/config.json")
config_data = config_stream.read().decode("utf-8")
model_path = f"{model_prefix}/model.safetensors"
if self.file_exists_in_s3(model_path):
model_stream = self.stream_from_s3(model_path)
model = AutoModelForCausalLM.from_config(config_data)
model.load_state_dict(safetensors.torch.load_stream(model_stream))
elif model_files:
model = AutoModelForCausalLM.from_config(config_data)
state_dict = {}
for file_name in model_files:
file_stream = self.stream_from_s3(f"{model_prefix}/{file_name}")
tmp = torch.load(file_stream, map_location="cpu")
state_dict.update(tmp)
model.load_state_dict(state_dict)
else:
raise HTTPException(status_code=500, detail="Modelo no encontrado")
return model
except HTTPException as e:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo: {e}")
def list_model_files(self, model_prefix):
try:
response = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=f"{model_prefix}/pytorch_model-")
model_files = []
if 'Contents' in response:
for obj in response['Contents']:
if re.match(r"pytorch_model-\d+-of-\d+", obj['Key'].split('/')[-1]):
model_files.append(obj['Key'].split('/')[-1])
return model_files
except Exception as e:
return None
def load_tokenizer_from_stream(self, model_prefix):
try:
tokenizer_path = f"{model_prefix}/tokenizer.json"
if self.file_exists_in_s3(tokenizer_path):
tokenizer_stream = self.stream_from_s3(tokenizer_path)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream)
return tokenizer
else:
self.download_and_upload_to_s3(model_prefix)
return self.load_tokenizer_from_stream(model_prefix)
except HTTPException as e:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer: {e}")
def download_and_upload_to_s3(self, model_prefix):
urls = {
"pytorch_model.bin": f"https://huggingface.co/{model_prefix}/resolve/main/pytorch_model.bin",
"model.safetensors": f"https://huggingface.co/{model_prefix}/resolve/main/model.safetensors",
"tokenizer.json": f"https://huggingface.co/{model_prefix}/resolve/main/tokenizer.json",
"config.json": f"https://huggingface.co/{model_prefix}/resolve/main/config.json"
}
for filename, url in urls.items():
try:
response = requests.get(url, stream=True)
response.raise_for_status()
self.s3_client.upload_fileobj(response.raw, self.bucket_name, f"{model_prefix}/{filename}")
except requests.exceptions.RequestException as e:
raise HTTPException(status_code=500, detail=f"Error al descargar {filename}: {e}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al subir {filename} a S3: {e}")
@app.post("/predict/")
async def predict(model_request: DownloadModelRequest):
try:
streamer = S3DirectStream(S3_BUCKET_NAME)
model = streamer.load_model_from_stream(model_request.model_name)
tokenizer = streamer.load_tokenizer_from_stream(model_request.model_name)
task = model_request.pipeline_task
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering", "text-to-speech", "text-to-image", "text-to-audio", "text-to-video"]:
raise HTTPException(status_code=400, detail="Pipeline task no soportado")
nlp_pipeline = pipeline(task, model=model, tokenizer=tokenizer)
input_text = model_request.input_text
outputs = nlp_pipeline(input_text)
if task in ["text-generation", "translation", "fill-mask", "sentiment-analysis", "question-answering"]:
return {"response": outputs}
elif task == "text-to-image":
s3_key = f"{model_request.model_name}/generated_image.png"
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="image/png")
elif task == "text-to-audio":
s3_key = f"{model_request.model_name}/generated_audio.wav"
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="audio/wav")
elif task == "text-to-video":
s3_key = f"{model_request.model_name}/generated_video.mp4"
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="video/mp4")
else:
raise HTTPException(status_code=400, detail="Tipo de tarea desconocido")
except HTTPException as e:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error inesperado: {str(e)}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)