Spaces:
Sleeping
Sleeping
import os | |
import logging | |
import threading | |
import boto3 | |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, StoppingCriteriaList, AutoConfig | |
from fastapi import FastAPI, HTTPException, Request | |
from pydantic import BaseModel, field_validator | |
from huggingface_hub import hf_hub_download | |
import requests | |
import time | |
import asyncio | |
from fastapi.responses import StreamingResponse, Response | |
import torch | |
from io import BytesIO | |
import numpy as np | |
import soundfile as sf | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s") | |
app = FastAPI() | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
AWS_REGION = os.getenv("AWS_REGION") | |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") | |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") | |
class GenerateRequest(BaseModel): | |
model_name: str | |
input_text: str = "" | |
task_type: str | |
temperature: float = 1.0 | |
max_new_tokens: int = 200 | |
stream: bool = False | |
top_p: float = 1.0 | |
top_k: int = 50 | |
repetition_penalty: float = 1.0 | |
num_return_sequences: int = 1 | |
do_sample: bool = True | |
chunk_delay: float = 0.0 | |
stop_sequences: list[str] = [] | |
def model_name_cannot_be_empty(cls, v): | |
if not v: | |
raise ValueError("model_name cannot be empty.") | |
return v | |
def task_type_must_be_valid(cls, v): | |
valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"] | |
if v not in valid_types: | |
raise ValueError(f"task_type must be one of: {valid_types}") | |
return v | |
class S3ModelLoader: | |
def __init__(self, bucket_name, s3_client): | |
self.bucket_name = bucket_name | |
self.s3_client = s3_client | |
def _get_s3_uri(self, model_name): | |
return f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}" | |
def _download_from_s3(self, model_name): | |
try: | |
logging.info(f"Attempting to load model {model_name} from S3...") | |
model_files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=f"lilmeaty_garca/{model_name}") | |
if "Contents" not in model_files: | |
raise FileNotFoundError(f"Model files not found in S3 for {model_name}") | |
s3_model_path = f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}" | |
logging.info(f"Model {model_name} found on S3 at {s3_model_path}") | |
return s3_model_path | |
except Exception as e: | |
logging.error(f"Error downloading from S3: {e}") | |
raise HTTPException(status_code=500, detail=f"Error downloading model from S3: {e}") | |
def download_model_from_huggingface(self, model_name): | |
try: | |
logging.info(f"Downloading model {model_name} from Hugging Face...") | |
model_dir = hf_hub_download(model_name, token=HUGGINGFACE_HUB_TOKEN) | |
model_files = os.listdir(model_dir) | |
for model_file in model_files: | |
s3_path = f"lilmeaty_garca/{model_name}/{model_file}" | |
self.s3_client.upload_file(os.path.join(model_dir, model_file), self.bucket_name, s3_path) | |
logging.info(f"Model {model_name} saved to S3 successfully.") | |
except Exception as e: | |
logging.error(f"Error downloading model {model_name} from Hugging Face: {e}") | |
def download_all_models_in_background(self): | |
models_url = "https://huggingface.co/api/models" | |
try: | |
response = requests.get(models_url) | |
if response.status_code != 200: | |
logging.error("Error getting Hugging Face model list.") | |
raise HTTPException(status_code=500, detail="Error getting model list.") | |
models = response.json() | |
for model in models: | |
model_name = model["id"] | |
self.download_model_from_huggingface(model_name) | |
except Exception as e: | |
logging.error(f"Error downloading models in the background: {e}") | |
raise HTTPException(status_code=500, detail="Error downloading models in the background.") | |
def run_in_background(self): | |
threading.Thread(target=self.download_all_models_in_background, daemon=True).start() | |
async def startup_event(): | |
model_loader.run_in_background() | |
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION) | |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client) | |
async def generate(request: Request, body: GenerateRequest): | |
try: | |
validated_body = GenerateRequest(**body.model_dump()) | |
model, tokenizer = await model_loader.load_model_and_tokenizer(validated_body.model_name) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
if validated_body.task_type == "text-to-text": | |
generation_config = GenerationConfig( | |
temperature=validated_body.temperature, | |
max_new_tokens=validated_body.max_new_tokens, | |
top_p=validated_body.top_p, | |
top_k=validated_body.top_k, | |
repetition_penalty=validated_body.repetition_penalty, | |
do_sample=validated_body.do_sample, | |
num_return_sequences=validated_body.num_return_sequences | |
) | |
async def stream_text(): | |
input_text = validated_body.input_text | |
generated_text = "" | |
max_length = model.config.max_position_embeddings | |
while True: | |
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device) | |
input_length = encoded_input["input_ids"].shape[1] | |
remaining_tokens = max_length - input_length | |
if remaining_tokens <= 0: | |
break | |
generation_config.max_new_tokens = min(remaining_tokens, validated_body.max_new_tokens) | |
stopping_criteria = StoppingCriteriaList( | |
[lambda _, outputs: tokenizer.decode(outputs[0][-1], skip_special_tokens=True) in validated_body.stop_sequences] if validated_body.stop_sequences else [] | |
) | |
output = model.generate(**encoded_input, generation_config=generation_config, stopping_criteria=stopping_criteria) | |
chunk = tokenizer.decode(output[0], skip_special_tokens=True) | |
generated_text += chunk | |
yield chunk | |
time.sleep(validated_body.chunk_delay) | |
input_text = generated_text | |
if validated_body.stream: | |
return StreamingResponse(stream_text(), media_type="text/plain") | |
else: | |
generated_text = "" | |
async for chunk in stream_text(): | |
generated_text += chunk | |
return {"result": generated_text} | |
elif validated_body.task_type == "text-to-image": | |
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device) | |
image = generator(validated_body.input_text)[0] | |
image_bytes = image.tobytes() | |
return Response(content=image_bytes, media_type="image/png") | |
elif validated_body.task_type == "text-to-speech": | |
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device) | |
audio = generator(validated_body.input_text) | |
audio_bytesio = BytesIO() | |
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"])) | |
audio_bytes = audio_bytesio.getvalue() | |
return Response(content=audio_bytes, media_type="audio/wav") | |
elif validated_body.task_type == "text-to-video": | |
try: | |
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device) | |
video = generator(validated_body.input_text) | |
return Response(content=video, media_type="video/mp4") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error generating video: {str(e)}") | |
else: | |
raise HTTPException(status_code=400, detail="Invalid task type.") | |
except Exception as e: | |
logging.error(f"Error processing request: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") | |
def download_model_from_s3_or_hf(model_name): | |
try: | |
model_dir = model_loader._download_from_s3(model_name) | |
return model_dir | |
except Exception: | |
model_loader.download_model_from_huggingface(model_name) | |
return model_loader._download_from_s3(model_name) | |
def ensure_s3_directories(model_name): | |
try: | |
s3_path = f"lilmeaty_garca/{model_name}" | |
s3_client.put_object(Bucket=S3_BUCKET_NAME, Key=s3_path) | |
except Exception as e: | |
logging.error(f"Error ensuring S3 directories exist for model {model_name}: {e}") | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |