aws_test / app.py
Hjgugugjhuhjggg's picture
Update app.py
944ca71 verified
raw
history blame
9 kB
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
StoppingCriteriaList,
pipeline
)
import asyncio
from io import BytesIO
from botocore.exceptions import NoCredentialsError
import boto3
from huggingface_hub import snapshot_download
# Diccionario global para almacenar los tokens y configuraciones de los modelos
token_dict = {}
# Configuraci贸n para acceso a modelos en Hugging Face o S3
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
# Inicializaci贸n de la aplicaci贸n FastAPI
app = FastAPI()
# Modelo de la solicitud para la API
class GenerateRequest(BaseModel):
model_name: str
input_text: str
task_type: str
temperature: float = 1.0
max_new_tokens: int = 200
stream: bool = True
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
chunk_delay: float = 0.0
stop_sequences: list[str] = []
class S3ModelLoader:
def __init__(self, bucket_name, aws_access_key_id=None, aws_secret_access_key=None, aws_region=None):
self.bucket_name = bucket_name
self.s3_client = boto3.client(
's3',
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name=aws_region
)
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
def load_model_and_tokenizer(self, model_name):
if model_name in token_dict:
return token_dict[model_name]
s3_uri = self._get_s3_uri(model_name)
try:
# Descargamos el modelo y el tokenizer desde Hugging Face directamente a S3
model_path = snapshot_download(model_name, token=HUGGINGFACE_HUB_TOKEN)
model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
if tokenizer.eos_token_id is None:
tokenizer.eos_token_id = tokenizer.pad_token_id
# Guardamos en el diccionario global
token_dict[model_name] = {
"model": model,
"tokenizer": tokenizer,
"pad_token_id": tokenizer.pad_token_id,
"eos_token_id": tokenizer.eos_token_id
}
# Subimos los modelos al S3 si es necesario
self.s3_client.upload_file(model_path, self.bucket_name, f'{model_name}/model')
self.s3_client.upload_file(f'{model_path}/tokenizer', self.bucket_name, f'{model_name}/tokenizer')
return token_dict[model_name]
except NoCredentialsError:
raise HTTPException(status_code=500, detail="AWS credentials not found.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
model_loader = S3ModelLoader(S3_BUCKET_NAME, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION)
# Funci贸n para hacer streaming de texto, generando un token a la vez
async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay, max_length=2048):
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
input_length = encoded_input["input_ids"].shape[1]
remaining_tokens = max_length - input_length
if remaining_tokens <= 0:
yield ""
generation_config.max_new_tokens = min(remaining_tokens, generation_config.max_new_tokens)
def stop_criteria(input_ids, scores):
decoded_output = tokenizer.decode(int(input_ids[0][-1]), skip_special_tokens=True)
return decoded_output in stop_sequences
stopping_criteria = StoppingCriteriaList([stop_criteria])
output_text = ""
outputs = model.generate(
**encoded_input,
do_sample=generation_config.do_sample,
max_new_tokens=generation_config.max_new_tokens,
temperature=generation_config.temperature,
top_p=generation_config.top_p,
top_k=generation_config.top_k,
repetition_penalty=generation_config.repetition_penalty,
num_return_sequences=generation_config.num_return_sequences,
stopping_criteria=stopping_criteria,
output_scores=True,
return_dict_in_generate=True
)
for output in outputs.sequences:
for token_id in output:
token = tokenizer.decode(token_id, skip_special_tokens=True)
yield token
await asyncio.sleep(chunk_delay) # Simula el delay entre tokens
if stop_sequences and any(stop in output_text for stop in stop_sequences):
yield output_text
return
# Endpoint para la generaci贸n de texto
@app.post("/generate")
async def generate(request: GenerateRequest):
try:
model_name = request.model_name
input_text = request.input_text
temperature = request.temperature
max_new_tokens = request.max_new_tokens
stream = request.stream
top_p = request.top_p
top_k = request.top_k
repetition_penalty = request.repetition_penalty
num_return_sequences = request.num_return_sequences
do_sample = request.do_sample
chunk_delay = request.chunk_delay
stop_sequences = request.stop_sequences
# Cargar el modelo y el tokenizer desde el S3
model_data = model_loader.load_model_and_tokenizer(model_name)
model = model_data["model"]
tokenizer = model_data["tokenizer"]
pad_token_id = model_data["pad_token_id"]
eos_token_id = model_data["eos_token_id"]
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
generation_config = GenerationConfig(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
num_return_sequences=num_return_sequences,
)
return StreamingResponse(
stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay),
media_type="text/plain"
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
# Endpoint para la generaci贸n de im谩genes
@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
image_generator = pipeline("text-to-image", model=validated_body.model_name, device=device)
image = image_generator(validated_body.input_text)[0]
img_byte_arr = BytesIO()
image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
return StreamingResponse(img_byte_arr, media_type="image/png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
# Endpoint para la generaci贸n de texto a voz
@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
audio_generator = pipeline("text-to-speech", model=validated_body.model_name, device=device)
audio = audio_generator(validated_body.input_text)[0]
audio_byte_arr = BytesIO()
audio.save(audio_byte_arr)
audio_byte_arr.seek(0)
return StreamingResponse(audio_byte_arr, media_type="audio/wav")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
# Endpoint para la generaci贸n de video
@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
video_generator = pipeline("text-to-video", model=validated_body.model_name, device=device)
video = video_generator(validated_body.input_text)[0]
video_byte_arr = BytesIO()
video.save(video_byte_arr)
video_byte_arr.seek(0)
return StreamingResponse(video_byte_arr, media_type="video/mp4")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
# Configuraci贸n para ejecutar el servidor
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)