Spaces:
Sleeping
Sleeping
File size: 8,999 Bytes
014edf2 eda5cd9 5d00129 14bbbee 5d00129 d9e405b 05818b6 5d00129 eda5cd9 05818b6 944ca71 014edf2 05818b6 14bbbee 05818b6 014edf2 1949d3a 014edf2 05818b6 eda5cd9 05818b6 1949d3a 14bbbee 1949d3a 5d00129 eda5cd9 5d00129 d9e405b 5d00129 05818b6 014edf2 05818b6 014edf2 5d00129 14bbbee 05818b6 14bbbee 5d00129 014edf2 944ca71 d9e405b 14bbbee d9e405b 944ca71 14bbbee 99862b8 944ca71 14bbbee 05818b6 14bbbee 5d00129 05818b6 eda5cd9 05818b6 eda5cd9 05818b6 eda5cd9 05818b6 eda5cd9 05818b6 eda5cd9 014edf2 eda5cd9 014edf2 05818b6 eda5cd9 5d00129 05818b6 014edf2 14bbbee 05818b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
StoppingCriteriaList,
pipeline
)
import asyncio
from io import BytesIO
from botocore.exceptions import NoCredentialsError
import boto3
from huggingface_hub import snapshot_download
# Diccionario global para almacenar los tokens y configuraciones de los modelos
token_dict = {}
# Configuraci贸n para acceso a modelos en Hugging Face o S3
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
# Inicializaci贸n de la aplicaci贸n FastAPI
app = FastAPI()
# Modelo de la solicitud para la API
class GenerateRequest(BaseModel):
model_name: str
input_text: str
task_type: str
temperature: float = 1.0
max_new_tokens: int = 200
stream: bool = True
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
chunk_delay: float = 0.0
stop_sequences: list[str] = []
class S3ModelLoader:
def __init__(self, bucket_name, aws_access_key_id=None, aws_secret_access_key=None, aws_region=None):
self.bucket_name = bucket_name
self.s3_client = boto3.client(
's3',
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name=aws_region
)
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
def load_model_and_tokenizer(self, model_name):
if model_name in token_dict:
return token_dict[model_name]
s3_uri = self._get_s3_uri(model_name)
try:
# Descargamos el modelo y el tokenizer desde Hugging Face directamente a S3
model_path = snapshot_download(model_name, token=HUGGINGFACE_HUB_TOKEN)
model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
if tokenizer.eos_token_id is None:
tokenizer.eos_token_id = tokenizer.pad_token_id
# Guardamos en el diccionario global
token_dict[model_name] = {
"model": model,
"tokenizer": tokenizer,
"pad_token_id": tokenizer.pad_token_id,
"eos_token_id": tokenizer.eos_token_id
}
# Subimos los modelos al S3 si es necesario
self.s3_client.upload_file(model_path, self.bucket_name, f'{model_name}/model')
self.s3_client.upload_file(f'{model_path}/tokenizer', self.bucket_name, f'{model_name}/tokenizer')
return token_dict[model_name]
except NoCredentialsError:
raise HTTPException(status_code=500, detail="AWS credentials not found.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
model_loader = S3ModelLoader(S3_BUCKET_NAME, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION)
# Funci贸n para hacer streaming de texto, generando un token a la vez
async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay, max_length=2048):
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
input_length = encoded_input["input_ids"].shape[1]
remaining_tokens = max_length - input_length
if remaining_tokens <= 0:
yield ""
generation_config.max_new_tokens = min(remaining_tokens, generation_config.max_new_tokens)
def stop_criteria(input_ids, scores):
decoded_output = tokenizer.decode(int(input_ids[0][-1]), skip_special_tokens=True)
return decoded_output in stop_sequences
stopping_criteria = StoppingCriteriaList([stop_criteria])
output_text = ""
outputs = model.generate(
**encoded_input,
do_sample=generation_config.do_sample,
max_new_tokens=generation_config.max_new_tokens,
temperature=generation_config.temperature,
top_p=generation_config.top_p,
top_k=generation_config.top_k,
repetition_penalty=generation_config.repetition_penalty,
num_return_sequences=generation_config.num_return_sequences,
stopping_criteria=stopping_criteria,
output_scores=True,
return_dict_in_generate=True
)
for output in outputs.sequences:
for token_id in output:
token = tokenizer.decode(token_id, skip_special_tokens=True)
yield token
await asyncio.sleep(chunk_delay) # Simula el delay entre tokens
if stop_sequences and any(stop in output_text for stop in stop_sequences):
yield output_text
return
# Endpoint para la generaci贸n de texto
@app.post("/generate")
async def generate(request: GenerateRequest):
try:
model_name = request.model_name
input_text = request.input_text
temperature = request.temperature
max_new_tokens = request.max_new_tokens
stream = request.stream
top_p = request.top_p
top_k = request.top_k
repetition_penalty = request.repetition_penalty
num_return_sequences = request.num_return_sequences
do_sample = request.do_sample
chunk_delay = request.chunk_delay
stop_sequences = request.stop_sequences
# Cargar el modelo y el tokenizer desde el S3
model_data = model_loader.load_model_and_tokenizer(model_name)
model = model_data["model"]
tokenizer = model_data["tokenizer"]
pad_token_id = model_data["pad_token_id"]
eos_token_id = model_data["eos_token_id"]
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
generation_config = GenerationConfig(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
num_return_sequences=num_return_sequences,
)
return StreamingResponse(
stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay),
media_type="text/plain"
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
# Endpoint para la generaci贸n de im谩genes
@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
image_generator = pipeline("text-to-image", model=validated_body.model_name, device=device)
image = image_generator(validated_body.input_text)[0]
img_byte_arr = BytesIO()
image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
return StreamingResponse(img_byte_arr, media_type="image/png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
# Endpoint para la generaci贸n de texto a voz
@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
audio_generator = pipeline("text-to-speech", model=validated_body.model_name, device=device)
audio = audio_generator(validated_body.input_text)[0]
audio_byte_arr = BytesIO()
audio.save(audio_byte_arr)
audio_byte_arr.seek(0)
return StreamingResponse(audio_byte_arr, media_type="audio/wav")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
# Endpoint para la generaci贸n de video
@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
video_generator = pipeline("text-to-video", model=validated_body.model_name, device=device)
video = video_generator(validated_body.input_text)[0]
video_byte_arr = BytesIO()
video.save(video_byte_arr)
video_byte_arr.seek(0)
return StreamingResponse(video_byte_arr, media_type="video/mp4")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
# Configuraci贸n para ejecutar el servidor
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|