Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,27 +5,31 @@ from fastapi.responses import StreamingResponse
|
|
5 |
from pydantic import BaseModel
|
6 |
from transformers import (
|
7 |
AutoConfig,
|
8 |
-
pipeline,
|
9 |
AutoModelForCausalLM,
|
10 |
AutoTokenizer,
|
11 |
GenerationConfig,
|
12 |
-
StoppingCriteriaList
|
|
|
13 |
)
|
14 |
import asyncio
|
15 |
from io import BytesIO
|
|
|
|
|
16 |
|
17 |
-
# Diccionario global para almacenar los tokens
|
18 |
token_dict = {}
|
19 |
|
20 |
-
#
|
21 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
22 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
23 |
AWS_REGION = os.getenv("AWS_REGION")
|
24 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
25 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
26 |
|
|
|
27 |
app = FastAPI()
|
28 |
|
|
|
29 |
class GenerateRequest(BaseModel):
|
30 |
model_name: str
|
31 |
input_text: str
|
@@ -42,14 +46,19 @@ class GenerateRequest(BaseModel):
|
|
42 |
stop_sequences: list[str] = []
|
43 |
|
44 |
class S3ModelLoader:
|
45 |
-
def __init__(self, bucket_name,
|
46 |
self.bucket_name = bucket_name
|
47 |
-
self.s3_client =
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
def _get_s3_uri(self, model_name):
|
50 |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
|
51 |
|
52 |
-
|
53 |
if model_name in token_dict:
|
54 |
return token_dict[model_name]
|
55 |
|
@@ -69,55 +78,14 @@ class S3ModelLoader:
|
|
69 |
}
|
70 |
|
71 |
return token_dict[model_name]
|
|
|
|
|
72 |
except Exception as e:
|
73 |
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
74 |
|
75 |
-
model_loader = S3ModelLoader(S3_BUCKET_NAME,
|
76 |
-
|
77 |
-
@app.post("/generate")
|
78 |
-
async def generate(request: GenerateRequest):
|
79 |
-
try:
|
80 |
-
model_name = request.model_name
|
81 |
-
input_text = request.input_text
|
82 |
-
temperature = request.temperature
|
83 |
-
max_new_tokens = request.max_new_tokens
|
84 |
-
stream = request.stream
|
85 |
-
top_p = request.top_p
|
86 |
-
top_k = request.top_k
|
87 |
-
repetition_penalty = request.repetition_penalty
|
88 |
-
num_return_sequences = request.num_return_sequences
|
89 |
-
do_sample = request.do_sample
|
90 |
-
chunk_delay = request.chunk_delay
|
91 |
-
stop_sequences = request.stop_sequences
|
92 |
-
|
93 |
-
# Cargar modelo y tokenizer desde el S3
|
94 |
-
model_data = await model_loader.load_model_and_tokenizer(model_name)
|
95 |
-
model = model_data["model"]
|
96 |
-
tokenizer = model_data["tokenizer"]
|
97 |
-
pad_token_id = model_data["pad_token_id"]
|
98 |
-
eos_token_id = model_data["eos_token_id"]
|
99 |
-
|
100 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
101 |
-
model.to(device)
|
102 |
-
|
103 |
-
generation_config = GenerationConfig(
|
104 |
-
temperature=temperature,
|
105 |
-
max_new_tokens=max_new_tokens,
|
106 |
-
top_p=top_p,
|
107 |
-
top_k=top_k,
|
108 |
-
repetition_penalty=repetition_penalty,
|
109 |
-
do_sample=do_sample,
|
110 |
-
num_return_sequences=num_return_sequences,
|
111 |
-
)
|
112 |
-
|
113 |
-
return StreamingResponse(
|
114 |
-
stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay),
|
115 |
-
media_type="text/plain"
|
116 |
-
)
|
117 |
-
|
118 |
-
except Exception as e:
|
119 |
-
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
120 |
|
|
|
121 |
async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay, max_length=2048):
|
122 |
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
|
123 |
input_length = encoded_input["input_ids"].shape[1]
|
@@ -159,20 +127,52 @@ async def stream_text(model, tokenizer, input_text, generation_config, stop_sequ
|
|
159 |
yield output_text
|
160 |
return
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
)
|
175 |
|
|
|
|
|
|
|
|
|
176 |
@app.post("/generate-image")
|
177 |
async def generate_image(request: GenerateRequest):
|
178 |
try:
|
@@ -191,6 +191,7 @@ async def generate_image(request: GenerateRequest):
|
|
191 |
except Exception as e:
|
192 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
193 |
|
|
|
194 |
@app.post("/generate-text-to-speech")
|
195 |
async def generate_text_to_speech(request: GenerateRequest):
|
196 |
try:
|
@@ -209,6 +210,7 @@ async def generate_text_to_speech(request: GenerateRequest):
|
|
209 |
except Exception as e:
|
210 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
211 |
|
|
|
212 |
@app.post("/generate-video")
|
213 |
async def generate_video(request: GenerateRequest):
|
214 |
try:
|
@@ -226,6 +228,7 @@ async def generate_video(request: GenerateRequest):
|
|
226 |
except Exception as e:
|
227 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
228 |
|
|
|
229 |
if __name__ == "__main__":
|
230 |
import uvicorn
|
231 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
5 |
from pydantic import BaseModel
|
6 |
from transformers import (
|
7 |
AutoConfig,
|
|
|
8 |
AutoModelForCausalLM,
|
9 |
AutoTokenizer,
|
10 |
GenerationConfig,
|
11 |
+
StoppingCriteriaList,
|
12 |
+
pipeline
|
13 |
)
|
14 |
import asyncio
|
15 |
from io import BytesIO
|
16 |
+
from botocore.exceptions import NoCredentialsError
|
17 |
+
import boto3
|
18 |
|
19 |
+
# Diccionario global para almacenar los tokens y configuraciones de los modelos
|
20 |
token_dict = {}
|
21 |
|
22 |
+
# Configuraci贸n para acceso a modelos en Hugging Face o S3
|
23 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
24 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
25 |
AWS_REGION = os.getenv("AWS_REGION")
|
26 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
27 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
28 |
|
29 |
+
# Inicializaci贸n de la aplicaci贸n FastAPI
|
30 |
app = FastAPI()
|
31 |
|
32 |
+
# Modelo de la solicitud para la API
|
33 |
class GenerateRequest(BaseModel):
|
34 |
model_name: str
|
35 |
input_text: str
|
|
|
46 |
stop_sequences: list[str] = []
|
47 |
|
48 |
class S3ModelLoader:
|
49 |
+
def __init__(self, bucket_name, aws_access_key_id=None, aws_secret_access_key=None, aws_region=None):
|
50 |
self.bucket_name = bucket_name
|
51 |
+
self.s3_client = boto3.client(
|
52 |
+
's3',
|
53 |
+
aws_access_key_id=aws_access_key_id,
|
54 |
+
aws_secret_access_key=aws_secret_access_key,
|
55 |
+
region_name=aws_region
|
56 |
+
)
|
57 |
|
58 |
def _get_s3_uri(self, model_name):
|
59 |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
|
60 |
|
61 |
+
def load_model_and_tokenizer(self, model_name):
|
62 |
if model_name in token_dict:
|
63 |
return token_dict[model_name]
|
64 |
|
|
|
78 |
}
|
79 |
|
80 |
return token_dict[model_name]
|
81 |
+
except NoCredentialsError:
|
82 |
+
raise HTTPException(status_code=500, detail="AWS credentials not found.")
|
83 |
except Exception as e:
|
84 |
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
85 |
|
86 |
+
model_loader = S3ModelLoader(S3_BUCKET_NAME, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
# Funci贸n para hacer streaming de texto, generando un token a la vez
|
89 |
async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay, max_length=2048):
|
90 |
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
|
91 |
input_length = encoded_input["input_ids"].shape[1]
|
|
|
127 |
yield output_text
|
128 |
return
|
129 |
|
130 |
+
# Endpoint para la generaci贸n de texto
|
131 |
+
@app.post("/generate")
|
132 |
+
async def generate(request: GenerateRequest):
|
133 |
+
try:
|
134 |
+
model_name = request.model_name
|
135 |
+
input_text = request.input_text
|
136 |
+
temperature = request.temperature
|
137 |
+
max_new_tokens = request.max_new_tokens
|
138 |
+
stream = request.stream
|
139 |
+
top_p = request.top_p
|
140 |
+
top_k = request.top_k
|
141 |
+
repetition_penalty = request.repetition_penalty
|
142 |
+
num_return_sequences = request.num_return_sequences
|
143 |
+
do_sample = request.do_sample
|
144 |
+
chunk_delay = request.chunk_delay
|
145 |
+
stop_sequences = request.stop_sequences
|
146 |
+
|
147 |
+
# Cargar el modelo y el tokenizer desde el S3
|
148 |
+
model_data = model_loader.load_model_and_tokenizer(model_name)
|
149 |
+
model = model_data["model"]
|
150 |
+
tokenizer = model_data["tokenizer"]
|
151 |
+
pad_token_id = model_data["pad_token_id"]
|
152 |
+
eos_token_id = model_data["eos_token_id"]
|
153 |
+
|
154 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
155 |
+
model.to(device)
|
156 |
+
|
157 |
+
generation_config = GenerationConfig(
|
158 |
+
temperature=temperature,
|
159 |
+
max_new_tokens=max_new_tokens,
|
160 |
+
top_p=top_p,
|
161 |
+
top_k=top_k,
|
162 |
+
repetition_penalty=repetition_penalty,
|
163 |
+
do_sample=do_sample,
|
164 |
+
num_return_sequences=num_return_sequences,
|
165 |
+
)
|
166 |
+
|
167 |
+
return StreamingResponse(
|
168 |
+
stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay),
|
169 |
+
media_type="text/plain"
|
170 |
)
|
171 |
|
172 |
+
except Exception as e:
|
173 |
+
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
174 |
+
|
175 |
+
# Endpoint para la generaci贸n de im谩genes
|
176 |
@app.post("/generate-image")
|
177 |
async def generate_image(request: GenerateRequest):
|
178 |
try:
|
|
|
191 |
except Exception as e:
|
192 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
193 |
|
194 |
+
# Endpoint para la generaci贸n de texto a voz
|
195 |
@app.post("/generate-text-to-speech")
|
196 |
async def generate_text_to_speech(request: GenerateRequest):
|
197 |
try:
|
|
|
210 |
except Exception as e:
|
211 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
212 |
|
213 |
+
# Endpoint para la generaci贸n de video
|
214 |
@app.post("/generate-video")
|
215 |
async def generate_video(request: GenerateRequest):
|
216 |
try:
|
|
|
228 |
except Exception as e:
|
229 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
230 |
|
231 |
+
# Configuraci贸n para ejecutar el servidor
|
232 |
if __name__ == "__main__":
|
233 |
import uvicorn
|
234 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|