aws_test / app.py
Hjgugugjhuhjggg's picture
Update app.py
972e5ee verified
raw
history blame
6.95 kB
from huggingface_hub import HfApi
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import requests
import boto3
from dotenv import load_dotenv
import os
import uvicorn
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextIteratorStreamer
import safetensors.torch
import torch
from fastapi.responses import StreamingResponse
load_dotenv()
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
app = FastAPI()
class DownloadModelRequest(BaseModel):
model_name: str
pipeline_task: str
input_text: str
revision: str = "main"
class S3DirectStream:
def __init__(self, bucket_name):
self.s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
self.bucket_name = bucket_name
def stream_from_s3(self, key):
try:
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
return response['Body']
except self.s3_client.exceptions.NoSuchKey:
raise HTTPException(status_code=404, detail=f"File {key} not found in S3")
def file_exists_in_s3(self, key):
try:
self.s3_client.head_object(Bucket=self.bucket_name, Key=key)
return True
except self.s3_client.exceptions.ClientError:
return False
def load_model_from_stream(self, model_prefix, revision):
try:
if self.file_exists_in_s3(f"{model_prefix}/config.json") and \
(self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin") or self.file_exists_in_s3(f"{model_prefix}/model.safetensors")):
return self.load_model_from_existing_s3(model_prefix)
self.download_and_upload_to_s3(model_prefix, revision)
return self.load_model_from_stream(model_prefix, revision)
except HTTPException as e:
return None
def load_model_from_existing_s3(self, model_prefix):
config_stream = self.stream_from_s3(f"{model_prefix}/config.json")
config = AutoConfig.from_pretrained(config_stream) # Directly from stream
if self.file_exists_in_s3(f"{model_prefix}/model.safetensors"):
model_stream = self.stream_from_s3(f"{model_prefix}/model.safetensors")
model = AutoModelForCausalLM.from_config(config)
model.load_state_dict(safetensors.torch.load_stream(model_stream))
elif self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin"):
model_stream = self.stream_from_s3(f"{model_prefix}/pytorch_model.bin")
model = AutoModelForCausalLM.from_config(config)
state_dict = torch.load(model_stream, map_location="cpu") # Load directly
model.load_state_dict(state_dict)
else:
raise EnvironmentError(f"No model file found for {model_prefix} in S3")
return model
def load_tokenizer_from_stream(self, model_prefix):
try:
if self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"):
return self.load_tokenizer_from_existing_s3(model_prefix)
self.download_and_upload_to_s3(model_prefix)
return self.load_tokenizer_from_stream(model_prefix)
except HTTPException as e:
return None
def load_tokenizer_from_existing_s3(self, model_prefix):
tokenizer_stream = self.stream_from_s3(f"{model_prefix}/tokenizer.json")
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream) # Directly from stream
return tokenizer
def download_and_upload_to_s3(self, model_prefix, revision="main"):
model_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/pytorch_model.bin"
safetensors_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/model.safetensors"
tokenizer_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/tokenizer.json"
config_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/config.json"
self.download_and_upload_to_s3_url(model_url, f"{model_prefix}/pytorch_model.bin")
self.download_and_upload_to_s3_url(safetensors_url, f"{model_prefix}/model.safetensors")
self.download_and_upload_to_s3_url(tokenizer_url, f"{model_prefix}/tokenizer.json")
self.download_and_upload_to_s3_url(config_url, f"{model_prefix}/config.json")
def download_and_upload_to_s3_url(self, url, s3_key):
response = requests.get(url, stream=True)
if response.status_code == 200:
self.s3_client.upload_fileobj(response.raw, self.bucket_name, s3_key) # Direct upload
elif response.status_code == 404:
raise HTTPException(status_code=404, detail=f"Error downloading file from {url}. File not found.")
else:
raise HTTPException(status_code=500, detail=f"Error downloading file from {url}")
@app.post("/predict/")
async def predict(model_request: DownloadModelRequest):
try:
model_name = model_request.model_name
revision = model_request.revision
streamer = S3DirectStream(S3_BUCKET_NAME)
model = streamer.load_model_from_stream(model_name, revision)
tokenizer = streamer.load_tokenizer_from_stream(model_name)
task = model_request.pipeline_task
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering", "summarization", "zero-shot-classification"]:
raise HTTPException(status_code=400, detail="Unsupported pipeline task")
if task == "text-generation":
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
inputs = tokenizer(model_request.input_text, return_tensors="pt").to(model.device)
generation_kwargs = dict(inputs, streamer=text_streamer)
model.generate(**generation_kwargs)
return StreamingResponse(iter([tokenizer.decode(token) for token in text_streamer]), media_type="text/event-stream")
else:
nlp_pipeline = pipeline(task, model=model, tokenizer=tokenizer, device_map="auto", trust_remote_code=True)
outputs = nlp_pipeline(model_request.input_text)
return {"result": outputs}
except Exception as e:
print(f"Complete Error: {e}")
raise HTTPException(status_code=500, detail=f"Error processing request: {str(e)}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)