Spaces:
Sleeping
Sleeping
from huggingface_hub import HfApi | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
import requests | |
import boto3 | |
from dotenv import load_dotenv | |
import os | |
import uvicorn | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextIteratorStreamer | |
import safetensors.torch | |
import torch | |
from fastapi.responses import StreamingResponse | |
load_dotenv() | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
AWS_REGION = os.getenv("AWS_REGION") | |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") | |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
s3_client = boto3.client( | |
's3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION | |
) | |
app = FastAPI() | |
class DownloadModelRequest(BaseModel): | |
model_name: str | |
pipeline_task: str | |
input_text: str | |
revision: str = "main" | |
class S3DirectStream: | |
def __init__(self, bucket_name): | |
self.s3_client = boto3.client( | |
's3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION | |
) | |
self.bucket_name = bucket_name | |
def stream_from_s3(self, key): | |
try: | |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key) | |
return response['Body'] | |
except self.s3_client.exceptions.NoSuchKey: | |
raise HTTPException(status_code=404, detail=f"File {key} not found in S3") | |
def file_exists_in_s3(self, key): | |
try: | |
self.s3_client.head_object(Bucket=self.bucket_name, Key=key) | |
return True | |
except self.s3_client.exceptions.ClientError: | |
return False | |
def load_model_from_stream(self, model_prefix, revision): | |
try: | |
if self.file_exists_in_s3(f"{model_prefix}/config.json") and \ | |
(self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin") or self.file_exists_in_s3(f"{model_prefix}/model.safetensors")): | |
return self.load_model_from_existing_s3(model_prefix) | |
self.download_and_upload_to_s3(model_prefix, revision) | |
return self.load_model_from_stream(model_prefix, revision) | |
except HTTPException as e: | |
return None | |
def load_model_from_existing_s3(self, model_prefix): | |
config_stream = self.stream_from_s3(f"{model_prefix}/config.json") | |
config = AutoConfig.from_pretrained(config_stream) # Directly from stream | |
if self.file_exists_in_s3(f"{model_prefix}/model.safetensors"): | |
model_stream = self.stream_from_s3(f"{model_prefix}/model.safetensors") | |
model = AutoModelForCausalLM.from_config(config) | |
model.load_state_dict(safetensors.torch.load_stream(model_stream)) | |
elif self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin"): | |
model_stream = self.stream_from_s3(f"{model_prefix}/pytorch_model.bin") | |
model = AutoModelForCausalLM.from_config(config) | |
state_dict = torch.load(model_stream, map_location="cpu") # Load directly | |
model.load_state_dict(state_dict) | |
else: | |
raise EnvironmentError(f"No model file found for {model_prefix} in S3") | |
return model | |
def load_tokenizer_from_stream(self, model_prefix): | |
try: | |
if self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"): | |
return self.load_tokenizer_from_existing_s3(model_prefix) | |
self.download_and_upload_to_s3(model_prefix) | |
return self.load_tokenizer_from_stream(model_prefix) | |
except HTTPException as e: | |
return None | |
def load_tokenizer_from_existing_s3(self, model_prefix): | |
tokenizer_stream = self.stream_from_s3(f"{model_prefix}/tokenizer.json") | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream) # Directly from stream | |
return tokenizer | |
def download_and_upload_to_s3(self, model_prefix, revision="main"): | |
model_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/pytorch_model.bin" | |
safetensors_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/model.safetensors" | |
tokenizer_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/tokenizer.json" | |
config_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/config.json" | |
self.download_and_upload_to_s3_url(model_url, f"{model_prefix}/pytorch_model.bin") | |
self.download_and_upload_to_s3_url(safetensors_url, f"{model_prefix}/model.safetensors") | |
self.download_and_upload_to_s3_url(tokenizer_url, f"{model_prefix}/tokenizer.json") | |
self.download_and_upload_to_s3_url(config_url, f"{model_prefix}/config.json") | |
def download_and_upload_to_s3_url(self, url, s3_key): | |
response = requests.get(url, stream=True) | |
if response.status_code == 200: | |
self.s3_client.upload_fileobj(response.raw, self.bucket_name, s3_key) # Direct upload | |
elif response.status_code == 404: | |
raise HTTPException(status_code=404, detail=f"Error downloading file from {url}. File not found.") | |
else: | |
raise HTTPException(status_code=500, detail=f"Error downloading file from {url}") | |
async def predict(model_request: DownloadModelRequest): | |
try: | |
model_name = model_request.model_name | |
revision = model_request.revision | |
streamer = S3DirectStream(S3_BUCKET_NAME) | |
model = streamer.load_model_from_stream(model_name, revision) | |
tokenizer = streamer.load_tokenizer_from_stream(model_name) | |
task = model_request.pipeline_task | |
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering", "summarization", "zero-shot-classification"]: | |
raise HTTPException(status_code=400, detail="Unsupported pipeline task") | |
if task == "text-generation": | |
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
inputs = tokenizer(model_request.input_text, return_tensors="pt").to(model.device) | |
generation_kwargs = dict(inputs, streamer=text_streamer) | |
model.generate(**generation_kwargs) | |
return StreamingResponse(iter([tokenizer.decode(token) for token in text_streamer]), media_type="text/event-stream") | |
else: | |
nlp_pipeline = pipeline(task, model=model, tokenizer=tokenizer, device_map="auto", trust_remote_code=True) | |
outputs = nlp_pipeline(model_request.input_text) | |
return {"result": outputs} | |
except Exception as e: | |
print(f"Complete Error: {e}") | |
raise HTTPException(status_code=500, detail=f"Error processing request: {str(e)}") | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) |