aws_test / app.py
Hjgugugjhuhjggg's picture
Update app.py
eec8624 verified
raw
history blame
12.6 kB
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel, field_validator
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StoppingCriteria, StoppingCriteriaList, pipeline
import boto3
import uvicorn
import asyncio
import json
from huggingface_hub import login
from botocore.exceptions import NoCredentialsError
from functools import cached_property
import base64
from optimum.onnxruntime import ORTModelForCausalLM
from optimum.bettertransformer import BetterTransformer
import bitsandbytes as bnb
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
if HUGGINGFACE_HUB_TOKEN:
login(token=HUGGINGFACE_HUB_TOKEN,add_to_git_credential=False)
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,region_name=AWS_REGION)
app = FastAPI()
class GenerateRequest(BaseModel):
model_name: str
input_text: str = ""
task_type: str
temperature: float = 0.01
max_new_tokens: int = 20
stream: bool = True
top_p: float = 1.0
top_k: int = 1
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = False
stop_sequences: list[str] = []
quantize: bool = True
use_onnx: bool = False
use_bettertransformer: bool = True
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-to-text", "text-to-image","text-to-speech", "text-to-video"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
self.model_cache = {}
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
async def _load_model_and_tokenizer(self, model_name, quantize, use_onnx, use_bettertransformer):
s3_uri = self._get_s3_uri(model_name)
try:
config = AutoConfig.from_pretrained(s3_uri, local_files_only=False)
if use_onnx:
model = ORTModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=False).to(self.device)
elif quantize:
model = AutoModelForCausalLM.from_pretrained(
s3_uri, config=config, local_files_only=False,
load_in_8bit=True
).to(self.device)
else:
model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=False).to(self.device)
if use_bettertransformer:
model = BetterTransformer.transform(model)
tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=False)
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
return model, tokenizer
except (EnvironmentError, NoCredentialsError):
try:
config = AutoConfig.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(model_name, config=config, token=HUGGINGFACE_HUB_TOKEN)
if use_onnx:
model = ORTModelForCausalLM.from_pretrained(model_name, config=config, token=HUGGINGFACE_HUB_TOKEN).to(self.device)
elif quantize:
model = AutoModelForCausalLM.from_pretrained(
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN,
load_in_8bit=True
).to(self.device)
else:
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, token=HUGGINGFACE_HUB_TOKEN).to(self.device)
if use_bettertransformer:
model = BetterTransformer.transform(model)
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
return model, tokenizer
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
@cached_property
def device(self):
return torch.device("cpu")
async def get_model_and_tokenizer(self, model_name, quantize, use_onnx, use_bettertransformer):
key = f"{model_name}-{quantize}-{use_onnx}-{use_bettertransformer}"
if key not in self.model_cache:
model, tokenizer = await self._load_model_and_tokenizer(model_name, quantize, use_onnx, use_bettertransformer)
self.model_cache[key] = {"model":model, "tokenizer":tokenizer}
return self.model_cache[key]["model"], self.model_cache[key]["tokenizer"]
async def get_pipeline(self, model_name, task_type):
if model_name not in self.model_cache:
config = AutoConfig.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
model = pipeline(task_type, model=model_name,device=self.device, config=config)
self.model_cache[model_name] = {"model":model}
return self.model_cache[model_name]["model"]
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
@app.post("/generate")
async def generate(request: GenerateRequest):
try:
model_name = request.model_name
input_text = request.input_text
task_type = request.task_type
temperature = request.temperature
max_new_tokens = request.max_new_tokens
stream = request.stream
top_p = request.top_p
top_k = request.top_k
repetition_penalty = request.repetition_penalty
num_return_sequences = request.num_return_sequences
do_sample = request.do_sample
stop_sequences = request.stop_sequences
quantize = request.quantize
use_onnx = request.use_onnx
use_bettertransformer = request.use_bettertransformer
model, tokenizer = await model_loader.get_model_and_tokenizer(model_name, quantize, use_onnx, use_bettertransformer)
if "text-to-text" == task_type:
generation_config = GenerationConfig(temperature=temperature,max_new_tokens=max_new_tokens,top_p=top_p,top_k=top_k,repetition_penalty=repetition_penalty,do_sample=do_sample,num_return_sequences=num_return_sequences,eos_token_id = tokenizer.eos_token_id)
if stream:
return StreamingResponse(stream_text(model, tokenizer, input_text,generation_config, stop_sequences),media_type="text/plain")
else:
result = await generate_text(model, tokenizer, input_text,generation_config, stop_sequences)
return JSONResponse({"text": result, "is_end": True})
else:
return HTTPException(status_code=400, detail="Task type not text-to-text")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
class StopOnSequences(StoppingCriteria):
def __init__(self, stop_sequences, tokenizer):
self.stop_sequences = stop_sequences
self.tokenizer = tokenizer
self.stop_ids = [tokenizer.encode(seq, add_special_tokens=False) for seq in stop_sequences]
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
decoded_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
for stop_sequence in self.stop_sequences:
if stop_sequence in decoded_text:
return True
return False
async def stream_text(model, tokenizer, input_text,generation_config, stop_sequences):
encoded_input = tokenizer(input_text, return_tensors="pt",truncation=True).to(model_loader.device)
stop_criteria = StopOnSequences(stop_sequences, tokenizer)
stopping_criteria = StoppingCriteriaList([stop_criteria])
async for token in _stream_text(model, encoded_input, tokenizer, generation_config, stop_criteria, stopping_criteria):
yield json.dumps({"text":token, "is_end": False}) + "\n"
yield json.dumps({"text":"", "is_end": True}) + "\n"
async def _stream_text(model, encoded_input, tokenizer, generation_config, stop_criteria, stopping_criteria):
output_text = ""
while True:
outputs = await asyncio.to_thread(model.generate,**encoded_input,do_sample=generation_config.do_sample,max_new_tokens=generation_config.max_new_tokens,temperature=generation_config.temperature,top_p=generation_config.top_p,top_k=generation_config.top_k,repetition_penalty=generation_config.repetition_penalty,num_return_sequences=generation_config.num_return_sequences,output_scores=True,return_dict_in_generate=True,stopping_criteria=stopping_criteria)
new_text = tokenizer.decode(outputs.sequences[0][len(encoded_input["input_ids"][0]):],skip_special_tokens=True)
if len(new_text) == 0:
if not stop_criteria(outputs.sequences, None):
for token in output_text.split():
yield token
break
output_text += new_text
for token in new_text.split():
yield token
if stop_criteria(outputs.sequences, None):
break
encoded_input = tokenizer(output_text, return_tensors="pt",truncation=True).to(model_loader.device)
output_text=""
async def generate_text(model, tokenizer, input_text,generation_config, stop_sequences):
encoded_input = tokenizer(input_text, return_tensors="pt",truncation=True).to(model_loader.device)
stop_criteria = StopOnSequences(stop_sequences, tokenizer)
stopping_criteria = StoppingCriteriaList([stop_criteria])
outputs = await asyncio.to_thread(model.generate,**encoded_input,do_sample=generation_config.do_sample,max_new_tokens=generation_config.max_new_tokens,temperature=generation_config.temperature,top_p=generation_config.top_p,top_k=generation_config.top_k,repetition_penalty=generation_config.repetition_penalty,num_return_sequences=num_return_sequences,output_scores=True,return_dict_in_generate=True,stopping_criteria=stopping_criteria)
generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
return generated_text
@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
try:
validated_body = request
model = await model_loader.get_pipeline(validated_body.model_name, "text-to-image")
image = model(validated_body.input_text)[0]
image_data = list(image.getdata())
return json.dumps({"image_data": image_data, "is_end": True})
except Exception as e:
raise HTTPException(status_code=500,detail=f"Internal server error: {str(e)}")
@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
try:
validated_body = request
audio_generator = await model_loader.get_pipeline(validated_body.model_name, "text-to-speech")
audio = audio_generator(validated_body.input_text)
audio_bytes = audio["audio"]
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
return json.dumps({"audio": audio_base64, "is_end": True})
except Exception as e:
raise HTTPException(status_code=500,detail=f"Internal server error: {str(e)}")
@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
try:
validated_body = request
video_generator = await model_loader.get_pipeline(validated_body.model_name, "text-to-video")
video = video_generator(validated_body.input_text)
video_base64 = base64.b64encode(video).decode('utf-8')
return json.dumps({"video": video_base64, "is_end": True})
except Exception as e:
raise HTTPException(status_code=500,detail=f"Internal server error: {str(e)}")
async def load_all_models():
pass
if __name__ == "__main__":
import asyncio
asyncio.run(load_all_models())
uvicorn.run(app, host="0.0.0.0", port=7860)