File size: 12,612 Bytes
7c21718
 
9de7b93
2e9ad50
7c21718
51f54bc
7c21718
 
a0b48c5
277e316
e6982de
e77c20c
51f54bc
 
 
 
eec8624
7c21718
 
 
 
 
 
 
e6982de
51f54bc
7c21718
51f54bc
7c21718
 
 
 
 
 
51f54bc
 
31c0598
7c21718
51f54bc
7c21718
 
51f54bc
7c21718
51f54bc
 
 
7c21718
 
 
 
 
 
 
51f54bc
7c21718
 
 
 
 
 
 
51f54bc
7c21718
51f54bc
 
b7a38a6
 
51f54bc
 
 
 
eec8624
 
 
 
51f54bc
 
 
 
 
 
 
2e9ad50
b7a38a6
7c21718
51f54bc
 
 
 
 
eec8624
 
 
 
51f54bc
 
 
 
 
 
2e9ad50
7c21718
51f54bc
 
 
0edd18a
51f54bc
 
 
 
 
 
 
 
 
 
 
 
7c21718
 
 
a0b48c5
7c21718
 
 
 
 
c8741b0
2e9ad50
7c21718
 
 
 
 
 
51f54bc
 
 
 
c17efbf
51f54bc
2e9ad50
51f54bc
2e9ad50
51f54bc
2e9ad50
c17efbf
e77c20c
7c21718
51f54bc
2e9ad50
 
 
 
 
 
 
 
 
 
 
51f54bc
 
2e9ad50
 
51f54bc
 
 
 
6de156a
 
51f54bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e9ad50
 
51f54bc
 
2e9ad50
7c21718
a0b48c5
7c21718
 
51f54bc
b7a38a6
e77c20c
 
7c21718
51f54bc
7c21718
a0b48c5
7c21718
 
51f54bc
6e229a7
e77c20c
 
 
7c21718
51f54bc
7c21718
a0b48c5
7c21718
 
51f54bc
6e229a7
e77c20c
 
7c21718
51f54bc
 
 
7c21718
51f54bc
 
7c21718
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel, field_validator
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StoppingCriteria, StoppingCriteriaList, pipeline
import boto3
import uvicorn
import asyncio
import json
from huggingface_hub import login
from botocore.exceptions import NoCredentialsError
from functools import cached_property
import base64
from optimum.onnxruntime import ORTModelForCausalLM
from optimum.bettertransformer import BetterTransformer
import bitsandbytes as bnb

AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")

if HUGGINGFACE_HUB_TOKEN:
    login(token=HUGGINGFACE_HUB_TOKEN,add_to_git_credential=False)

s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,region_name=AWS_REGION)
app = FastAPI()

class GenerateRequest(BaseModel):
    model_name: str
    input_text: str = ""
    task_type: str
    temperature: float = 0.01
    max_new_tokens: int = 20
    stream: bool = True
    top_p: float = 1.0
    top_k: int = 1
    repetition_penalty: float = 1.0
    num_return_sequences: int = 1
    do_sample: bool = False
    stop_sequences: list[str] = []
    quantize: bool = True
    use_onnx: bool = False
    use_bettertransformer: bool = True
    @field_validator("model_name")
    def model_name_cannot_be_empty(cls, v):
        if not v:
            raise ValueError("model_name cannot be empty.")
        return v
    @field_validator("task_type")
    def task_type_must_be_valid(cls, v):
        valid_types = ["text-to-text", "text-to-image","text-to-speech", "text-to-video"]
        if v not in valid_types:
            raise ValueError(f"task_type must be one of: {valid_types}")
        return v
class S3ModelLoader:
    def __init__(self, bucket_name, s3_client):
        self.bucket_name = bucket_name
        self.s3_client = s3_client
        self.model_cache = {}
    def _get_s3_uri(self, model_name):
         return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
    async def _load_model_and_tokenizer(self, model_name, quantize, use_onnx, use_bettertransformer):
       s3_uri = self._get_s3_uri(model_name)
       try:
            config = AutoConfig.from_pretrained(s3_uri, local_files_only=False)
            if use_onnx:
                model = ORTModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=False).to(self.device)
            elif quantize:
                model = AutoModelForCausalLM.from_pretrained(
                    s3_uri, config=config, local_files_only=False,
                    load_in_8bit=True
                    ).to(self.device)
            else:
                model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=False).to(self.device)
            if use_bettertransformer:
                model = BetterTransformer.transform(model)
            tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=False)
            if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
                tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
            return model, tokenizer
       except (EnvironmentError, NoCredentialsError):
            try:
                config = AutoConfig.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
                tokenizer = AutoTokenizer.from_pretrained(model_name, config=config, token=HUGGINGFACE_HUB_TOKEN)
                if use_onnx:
                    model = ORTModelForCausalLM.from_pretrained(model_name, config=config, token=HUGGINGFACE_HUB_TOKEN).to(self.device)
                elif quantize:
                    model = AutoModelForCausalLM.from_pretrained(
                        model_name, config=config, token=HUGGINGFACE_HUB_TOKEN,
                        load_in_8bit=True
                    ).to(self.device)
                else:
                     model = AutoModelForCausalLM.from_pretrained(model_name, config=config, token=HUGGINGFACE_HUB_TOKEN).to(self.device)
                if use_bettertransformer:
                    model = BetterTransformer.transform(model)
                if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
                    tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
                return model, tokenizer
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
    @cached_property
    def device(self):
        return torch.device("cpu")
    async def get_model_and_tokenizer(self, model_name, quantize, use_onnx, use_bettertransformer):
        key = f"{model_name}-{quantize}-{use_onnx}-{use_bettertransformer}"
        if key not in self.model_cache:
            model, tokenizer = await self._load_model_and_tokenizer(model_name, quantize, use_onnx, use_bettertransformer)
            self.model_cache[key] = {"model":model, "tokenizer":tokenizer}
        return self.model_cache[key]["model"], self.model_cache[key]["tokenizer"]
    async def get_pipeline(self, model_name, task_type):
        if model_name not in self.model_cache:
             config = AutoConfig.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
             model = pipeline(task_type, model=model_name,device=self.device, config=config)
             self.model_cache[model_name] = {"model":model}
        return self.model_cache[model_name]["model"]
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)

@app.post("/generate")
async def generate(request: GenerateRequest):
    try:
        model_name = request.model_name
        input_text = request.input_text
        task_type = request.task_type
        temperature = request.temperature
        max_new_tokens = request.max_new_tokens
        stream = request.stream
        top_p = request.top_p
        top_k = request.top_k
        repetition_penalty = request.repetition_penalty
        num_return_sequences = request.num_return_sequences
        do_sample = request.do_sample
        stop_sequences = request.stop_sequences
        quantize = request.quantize
        use_onnx = request.use_onnx
        use_bettertransformer = request.use_bettertransformer
        model, tokenizer = await model_loader.get_model_and_tokenizer(model_name, quantize, use_onnx, use_bettertransformer)
        if "text-to-text" == task_type:
            generation_config = GenerationConfig(temperature=temperature,max_new_tokens=max_new_tokens,top_p=top_p,top_k=top_k,repetition_penalty=repetition_penalty,do_sample=do_sample,num_return_sequences=num_return_sequences,eos_token_id = tokenizer.eos_token_id)
            if stream:
                return StreamingResponse(stream_text(model, tokenizer, input_text,generation_config, stop_sequences),media_type="text/plain")
            else:
                result = await generate_text(model, tokenizer, input_text,generation_config, stop_sequences)
                return JSONResponse({"text": result, "is_end": True})
        else:
            return HTTPException(status_code=400, detail="Task type not text-to-text")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
class StopOnSequences(StoppingCriteria):
    def __init__(self, stop_sequences, tokenizer):
        self.stop_sequences = stop_sequences
        self.tokenizer = tokenizer
        self.stop_ids = [tokenizer.encode(seq, add_special_tokens=False) for seq in stop_sequences]
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        decoded_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
        for stop_sequence in self.stop_sequences:
             if stop_sequence in decoded_text:
                 return True
        return False
async def stream_text(model, tokenizer, input_text,generation_config, stop_sequences):
    encoded_input = tokenizer(input_text, return_tensors="pt",truncation=True).to(model_loader.device)
    stop_criteria = StopOnSequences(stop_sequences, tokenizer)
    stopping_criteria = StoppingCriteriaList([stop_criteria])
    async for token in _stream_text(model, encoded_input, tokenizer, generation_config, stop_criteria, stopping_criteria):
            yield json.dumps({"text":token, "is_end": False}) + "\n"
    yield json.dumps({"text":"", "is_end": True}) + "\n"
async def _stream_text(model, encoded_input, tokenizer, generation_config, stop_criteria, stopping_criteria):
    output_text = ""
    while True:
         outputs = await asyncio.to_thread(model.generate,**encoded_input,do_sample=generation_config.do_sample,max_new_tokens=generation_config.max_new_tokens,temperature=generation_config.temperature,top_p=generation_config.top_p,top_k=generation_config.top_k,repetition_penalty=generation_config.repetition_penalty,num_return_sequences=generation_config.num_return_sequences,output_scores=True,return_dict_in_generate=True,stopping_criteria=stopping_criteria)
         new_text = tokenizer.decode(outputs.sequences[0][len(encoded_input["input_ids"][0]):],skip_special_tokens=True)
         if len(new_text) == 0:
             if not stop_criteria(outputs.sequences, None):
                 for token in output_text.split():
                    yield token
             break
         output_text += new_text
         for token in new_text.split():
              yield token
         if stop_criteria(outputs.sequences, None):
             break
         encoded_input = tokenizer(output_text, return_tensors="pt",truncation=True).to(model_loader.device)
         output_text=""
async def generate_text(model, tokenizer, input_text,generation_config, stop_sequences):
    encoded_input = tokenizer(input_text, return_tensors="pt",truncation=True).to(model_loader.device)
    stop_criteria = StopOnSequences(stop_sequences, tokenizer)
    stopping_criteria = StoppingCriteriaList([stop_criteria])
    outputs = await asyncio.to_thread(model.generate,**encoded_input,do_sample=generation_config.do_sample,max_new_tokens=generation_config.max_new_tokens,temperature=generation_config.temperature,top_p=generation_config.top_p,top_k=generation_config.top_k,repetition_penalty=generation_config.repetition_penalty,num_return_sequences=num_return_sequences,output_scores=True,return_dict_in_generate=True,stopping_criteria=stopping_criteria)
    generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
    return generated_text
@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
    try:
        validated_body = request
        model = await model_loader.get_pipeline(validated_body.model_name, "text-to-image")
        image = model(validated_body.input_text)[0]
        image_data = list(image.getdata())
        return json.dumps({"image_data": image_data, "is_end": True})
    except Exception as e:
        raise HTTPException(status_code=500,detail=f"Internal server error: {str(e)}")
@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
    try:
        validated_body = request
        audio_generator = await model_loader.get_pipeline(validated_body.model_name, "text-to-speech")
        audio = audio_generator(validated_body.input_text)
        audio_bytes = audio["audio"]
        audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
        return json.dumps({"audio": audio_base64, "is_end": True})
    except Exception as e:
        raise HTTPException(status_code=500,detail=f"Internal server error: {str(e)}")
@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
    try:
        validated_body = request
        video_generator = await model_loader.get_pipeline(validated_body.model_name, "text-to-video")
        video = video_generator(validated_body.input_text)
        video_base64 = base64.b64encode(video).decode('utf-8')
        return json.dumps({"video": video_base64, "is_end": True})
    except Exception as e:
        raise HTTPException(status_code=500,detail=f"Internal server error: {str(e)}")
async def load_all_models():
    pass
if __name__ == "__main__":
    import asyncio
    asyncio.run(load_all_models())
    uvicorn.run(app, host="0.0.0.0", port=7860)