Spaces:
Sleeping
Sleeping
File size: 12,612 Bytes
7c21718 9de7b93 2e9ad50 7c21718 51f54bc 7c21718 a0b48c5 277e316 e6982de e77c20c 51f54bc eec8624 7c21718 e6982de 51f54bc 7c21718 51f54bc 7c21718 51f54bc 31c0598 7c21718 51f54bc 7c21718 51f54bc 7c21718 51f54bc 7c21718 51f54bc 7c21718 51f54bc 7c21718 51f54bc b7a38a6 51f54bc eec8624 51f54bc 2e9ad50 b7a38a6 7c21718 51f54bc eec8624 51f54bc 2e9ad50 7c21718 51f54bc 0edd18a 51f54bc 7c21718 a0b48c5 7c21718 c8741b0 2e9ad50 7c21718 51f54bc c17efbf 51f54bc 2e9ad50 51f54bc 2e9ad50 51f54bc 2e9ad50 c17efbf e77c20c 7c21718 51f54bc 2e9ad50 51f54bc 2e9ad50 51f54bc 6de156a 51f54bc 2e9ad50 51f54bc 2e9ad50 7c21718 a0b48c5 7c21718 51f54bc b7a38a6 e77c20c 7c21718 51f54bc 7c21718 a0b48c5 7c21718 51f54bc 6e229a7 e77c20c 7c21718 51f54bc 7c21718 a0b48c5 7c21718 51f54bc 6e229a7 e77c20c 7c21718 51f54bc 7c21718 51f54bc 7c21718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel, field_validator
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StoppingCriteria, StoppingCriteriaList, pipeline
import boto3
import uvicorn
import asyncio
import json
from huggingface_hub import login
from botocore.exceptions import NoCredentialsError
from functools import cached_property
import base64
from optimum.onnxruntime import ORTModelForCausalLM
from optimum.bettertransformer import BetterTransformer
import bitsandbytes as bnb
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
if HUGGINGFACE_HUB_TOKEN:
login(token=HUGGINGFACE_HUB_TOKEN,add_to_git_credential=False)
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,region_name=AWS_REGION)
app = FastAPI()
class GenerateRequest(BaseModel):
model_name: str
input_text: str = ""
task_type: str
temperature: float = 0.01
max_new_tokens: int = 20
stream: bool = True
top_p: float = 1.0
top_k: int = 1
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = False
stop_sequences: list[str] = []
quantize: bool = True
use_onnx: bool = False
use_bettertransformer: bool = True
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-to-text", "text-to-image","text-to-speech", "text-to-video"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
self.model_cache = {}
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
async def _load_model_and_tokenizer(self, model_name, quantize, use_onnx, use_bettertransformer):
s3_uri = self._get_s3_uri(model_name)
try:
config = AutoConfig.from_pretrained(s3_uri, local_files_only=False)
if use_onnx:
model = ORTModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=False).to(self.device)
elif quantize:
model = AutoModelForCausalLM.from_pretrained(
s3_uri, config=config, local_files_only=False,
load_in_8bit=True
).to(self.device)
else:
model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=False).to(self.device)
if use_bettertransformer:
model = BetterTransformer.transform(model)
tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=False)
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
return model, tokenizer
except (EnvironmentError, NoCredentialsError):
try:
config = AutoConfig.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(model_name, config=config, token=HUGGINGFACE_HUB_TOKEN)
if use_onnx:
model = ORTModelForCausalLM.from_pretrained(model_name, config=config, token=HUGGINGFACE_HUB_TOKEN).to(self.device)
elif quantize:
model = AutoModelForCausalLM.from_pretrained(
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN,
load_in_8bit=True
).to(self.device)
else:
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, token=HUGGINGFACE_HUB_TOKEN).to(self.device)
if use_bettertransformer:
model = BetterTransformer.transform(model)
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
return model, tokenizer
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
@cached_property
def device(self):
return torch.device("cpu")
async def get_model_and_tokenizer(self, model_name, quantize, use_onnx, use_bettertransformer):
key = f"{model_name}-{quantize}-{use_onnx}-{use_bettertransformer}"
if key not in self.model_cache:
model, tokenizer = await self._load_model_and_tokenizer(model_name, quantize, use_onnx, use_bettertransformer)
self.model_cache[key] = {"model":model, "tokenizer":tokenizer}
return self.model_cache[key]["model"], self.model_cache[key]["tokenizer"]
async def get_pipeline(self, model_name, task_type):
if model_name not in self.model_cache:
config = AutoConfig.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
model = pipeline(task_type, model=model_name,device=self.device, config=config)
self.model_cache[model_name] = {"model":model}
return self.model_cache[model_name]["model"]
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
@app.post("/generate")
async def generate(request: GenerateRequest):
try:
model_name = request.model_name
input_text = request.input_text
task_type = request.task_type
temperature = request.temperature
max_new_tokens = request.max_new_tokens
stream = request.stream
top_p = request.top_p
top_k = request.top_k
repetition_penalty = request.repetition_penalty
num_return_sequences = request.num_return_sequences
do_sample = request.do_sample
stop_sequences = request.stop_sequences
quantize = request.quantize
use_onnx = request.use_onnx
use_bettertransformer = request.use_bettertransformer
model, tokenizer = await model_loader.get_model_and_tokenizer(model_name, quantize, use_onnx, use_bettertransformer)
if "text-to-text" == task_type:
generation_config = GenerationConfig(temperature=temperature,max_new_tokens=max_new_tokens,top_p=top_p,top_k=top_k,repetition_penalty=repetition_penalty,do_sample=do_sample,num_return_sequences=num_return_sequences,eos_token_id = tokenizer.eos_token_id)
if stream:
return StreamingResponse(stream_text(model, tokenizer, input_text,generation_config, stop_sequences),media_type="text/plain")
else:
result = await generate_text(model, tokenizer, input_text,generation_config, stop_sequences)
return JSONResponse({"text": result, "is_end": True})
else:
return HTTPException(status_code=400, detail="Task type not text-to-text")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
class StopOnSequences(StoppingCriteria):
def __init__(self, stop_sequences, tokenizer):
self.stop_sequences = stop_sequences
self.tokenizer = tokenizer
self.stop_ids = [tokenizer.encode(seq, add_special_tokens=False) for seq in stop_sequences]
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
decoded_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
for stop_sequence in self.stop_sequences:
if stop_sequence in decoded_text:
return True
return False
async def stream_text(model, tokenizer, input_text,generation_config, stop_sequences):
encoded_input = tokenizer(input_text, return_tensors="pt",truncation=True).to(model_loader.device)
stop_criteria = StopOnSequences(stop_sequences, tokenizer)
stopping_criteria = StoppingCriteriaList([stop_criteria])
async for token in _stream_text(model, encoded_input, tokenizer, generation_config, stop_criteria, stopping_criteria):
yield json.dumps({"text":token, "is_end": False}) + "\n"
yield json.dumps({"text":"", "is_end": True}) + "\n"
async def _stream_text(model, encoded_input, tokenizer, generation_config, stop_criteria, stopping_criteria):
output_text = ""
while True:
outputs = await asyncio.to_thread(model.generate,**encoded_input,do_sample=generation_config.do_sample,max_new_tokens=generation_config.max_new_tokens,temperature=generation_config.temperature,top_p=generation_config.top_p,top_k=generation_config.top_k,repetition_penalty=generation_config.repetition_penalty,num_return_sequences=generation_config.num_return_sequences,output_scores=True,return_dict_in_generate=True,stopping_criteria=stopping_criteria)
new_text = tokenizer.decode(outputs.sequences[0][len(encoded_input["input_ids"][0]):],skip_special_tokens=True)
if len(new_text) == 0:
if not stop_criteria(outputs.sequences, None):
for token in output_text.split():
yield token
break
output_text += new_text
for token in new_text.split():
yield token
if stop_criteria(outputs.sequences, None):
break
encoded_input = tokenizer(output_text, return_tensors="pt",truncation=True).to(model_loader.device)
output_text=""
async def generate_text(model, tokenizer, input_text,generation_config, stop_sequences):
encoded_input = tokenizer(input_text, return_tensors="pt",truncation=True).to(model_loader.device)
stop_criteria = StopOnSequences(stop_sequences, tokenizer)
stopping_criteria = StoppingCriteriaList([stop_criteria])
outputs = await asyncio.to_thread(model.generate,**encoded_input,do_sample=generation_config.do_sample,max_new_tokens=generation_config.max_new_tokens,temperature=generation_config.temperature,top_p=generation_config.top_p,top_k=generation_config.top_k,repetition_penalty=generation_config.repetition_penalty,num_return_sequences=num_return_sequences,output_scores=True,return_dict_in_generate=True,stopping_criteria=stopping_criteria)
generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
return generated_text
@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
try:
validated_body = request
model = await model_loader.get_pipeline(validated_body.model_name, "text-to-image")
image = model(validated_body.input_text)[0]
image_data = list(image.getdata())
return json.dumps({"image_data": image_data, "is_end": True})
except Exception as e:
raise HTTPException(status_code=500,detail=f"Internal server error: {str(e)}")
@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
try:
validated_body = request
audio_generator = await model_loader.get_pipeline(validated_body.model_name, "text-to-speech")
audio = audio_generator(validated_body.input_text)
audio_bytes = audio["audio"]
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
return json.dumps({"audio": audio_base64, "is_end": True})
except Exception as e:
raise HTTPException(status_code=500,detail=f"Internal server error: {str(e)}")
@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
try:
validated_body = request
video_generator = await model_loader.get_pipeline(validated_body.model_name, "text-to-video")
video = video_generator(validated_body.input_text)
video_base64 = base64.b64encode(video).decode('utf-8')
return json.dumps({"video": video_base64, "is_end": True})
except Exception as e:
raise HTTPException(status_code=500,detail=f"Internal server error: {str(e)}")
async def load_all_models():
pass
if __name__ == "__main__":
import asyncio
asyncio.run(load_all_models())
uvicorn.run(app, host="0.0.0.0", port=7860) |