aws_test / app.py
Hjgugugjhuhjggg's picture
Update app.py
abecee2 verified
raw
history blame
8.11 kB
import os
import logging
import requests
import threading
from io import BytesIO
from fastapi import FastAPI, HTTPException, Response
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig
)
import boto3
import torch
import uvicorn
from tqdm import tqdm
# Configuraci贸n de logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Variables de entorno
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
# Clase para la petici贸n de generaci贸n
class GenerateRequest(BaseModel):
model_name: str
input_text: str
task_type: str
temperature: float = 1.0
max_new_tokens: int = 200
stream: bool = False
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
class Config:
protected_namespaces = ()
# Clase para cargar modelos desde S3
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
def download_model_from_s3(self, model_name):
try:
config = AutoConfig.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config)
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
return model, tokenizer
except Exception:
return None, None
async def load_model_and_tokenizer(self, model_name):
try:
model, tokenizer = self.download_model_from_s3(model_name)
if model is None or tokenizer is None:
model, tokenizer = await self.download_and_save_model_from_huggingface(model_name)
return model, tokenizer
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
async def download_and_save_model_from_huggingface(self, model_name):
try:
with tqdm(unit="B", unit_scale=True, desc=f"Downloading {model_name}") as t:
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=HUGGINGFACE_HUB_TOKEN, _tqdm=t)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HUGGINGFACE_HUB_TOKEN)
self.upload_model_to_s3(model_name, model, tokenizer)
return model, tokenizer
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error downloading model from Hugging Face: {e}")
def upload_model_to_s3(self, model_name, model, tokenizer):
try:
s3_uri = self._get_s3_uri(model_name)
model.save_pretrained(s3_uri)
tokenizer.save_pretrained(s3_uri)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error saving model to S3: {e}")
# Crear la instancia de FastAPI
app = FastAPI()
# Instanciar model_loader aqu铆
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
# Funci贸n de generaci贸n asincr贸nica
@app.post("/generate")
async def generate(body: GenerateRequest):
try:
model, tokenizer = await model_loader.load_model_and_tokenizer(body.model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
if body.task_type == "text-to-text":
generation_config = GenerationConfig(
temperature=body.temperature,
max_new_tokens=body.max_new_tokens,
top_p=body.top_p,
top_k=body.top_k,
repetition_penalty=body.repetition_penalty,
do_sample=body.do_sample,
num_return_sequences=body.num_return_sequences
)
async def stream_text():
input_text = body.input_text
max_length = model.config.max_position_embeddings
generated_text = ""
while True:
inputs = tokenizer(input_text, return_tensors="pt").to(device)
input_length = inputs.input_ids.shape[1]
remaining_tokens = max_length - input_length
if remaining_tokens < body.max_new_tokens:
generation_config.max_new_tokens = remaining_tokens
if remaining_tokens <= 0:
break
output = model.generate(**inputs, generation_config=generation_config)
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
generated_text += chunk
yield chunk
if len(tokenizer.encode(generated_text)) >= max_length:
break
input_text = chunk
if body.stream:
return StreamingResponse(stream_text(), media_type="text/plain")
else:
generated_text = ""
async for chunk in stream_text():
generated_text += chunk
return {"result": generated_text}
elif body.task_type == "text-to-image":
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
image = generator(body.input_text)[0]
image_bytes = image.tobytes()
return Response(content=image_bytes, media_type="image/png")
elif body.task_type == "text-to-speech":
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
audio = generator(body.input_text)
audio_bytesio = BytesIO()
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
audio_bytes = audio_bytesio.getvalue()
return Response(content=audio_bytes, media_type="audio/wav")
elif body.task_type == "text-to-video":
try:
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
video = generator(body.input_text)
return Response(content=video, media_type="video/mp4")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")
else:
raise HTTPException(status_code=400, detail="Unsupported task type")
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Descargar todos los modelos en segundo plano
async def download_all_models_in_background():
models_url = "https://huggingface.co/api/models"
try:
response = requests.get(models_url)
if response.status_code != 200:
raise HTTPException(status_code=500, detail="Error al obtener la lista de modelos.")
models = response.json()
for model in models:
model_name = model["id"]
await model_loader.download_and_save_model_from_huggingface(model_name)
except Exception as e:
raise HTTPException(status_code=500, detail="Error al descargar modelos en segundo plano.")
# Funci贸n que corre en segundo plano para descargar modelos
def run_in_background():
threading.Thread(target=download_all_models_in_background, daemon=True).start()
# Si este archivo se ejecuta directamente, inicia el servidor
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)