Spaces:
Sleeping
Sleeping
File size: 8,114 Bytes
f56cbc6 2957fb3 c11082c 2957fb3 7150020 f56cbc6 c11082c 2957fb3 c11082c 2957fb3 c11082c f56cbc6 7150020 c11082c f56cbc6 7150020 f56cbc6 2957fb3 f56cbc6 7150020 2957fb3 3a145aa c11082c 2957fb3 7150020 2957fb3 f56cbc6 2957fb3 f56cbc6 2957fb3 c11082c f56cbc6 c11082c 93c284f c11082c 2957fb3 c11082c 2957fb3 c11082c 7150020 c11082c 2957fb3 c11082c b88653d 7150020 2957fb3 e58c8bb abecee2 7150020 2957fb3 7150020 f56cbc6 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 c11082c 2957fb3 f6a64dd 972e5ee 2957fb3 972e5ee 2957fb3 f56cbc6 c11082c 7150020 c11082c 7150020 c11082c 7150020 c11082c 3a145aa 7150020 f56cbc6 115afce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import logging
import requests
import threading
from io import BytesIO
from fastapi import FastAPI, HTTPException, Response
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig
)
import boto3
import torch
import uvicorn
from tqdm import tqdm
# Configuraci贸n de logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Variables de entorno
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
# Clase para la petici贸n de generaci贸n
class GenerateRequest(BaseModel):
model_name: str
input_text: str
task_type: str
temperature: float = 1.0
max_new_tokens: int = 200
stream: bool = False
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
class Config:
protected_namespaces = ()
# Clase para cargar modelos desde S3
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
def download_model_from_s3(self, model_name):
try:
config = AutoConfig.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config)
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
return model, tokenizer
except Exception:
return None, None
async def load_model_and_tokenizer(self, model_name):
try:
model, tokenizer = self.download_model_from_s3(model_name)
if model is None or tokenizer is None:
model, tokenizer = await self.download_and_save_model_from_huggingface(model_name)
return model, tokenizer
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
async def download_and_save_model_from_huggingface(self, model_name):
try:
with tqdm(unit="B", unit_scale=True, desc=f"Downloading {model_name}") as t:
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=HUGGINGFACE_HUB_TOKEN, _tqdm=t)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HUGGINGFACE_HUB_TOKEN)
self.upload_model_to_s3(model_name, model, tokenizer)
return model, tokenizer
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error downloading model from Hugging Face: {e}")
def upload_model_to_s3(self, model_name, model, tokenizer):
try:
s3_uri = self._get_s3_uri(model_name)
model.save_pretrained(s3_uri)
tokenizer.save_pretrained(s3_uri)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error saving model to S3: {e}")
# Crear la instancia de FastAPI
app = FastAPI()
# Instanciar model_loader aqu铆
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
# Funci贸n de generaci贸n asincr贸nica
@app.post("/generate")
async def generate(body: GenerateRequest):
try:
model, tokenizer = await model_loader.load_model_and_tokenizer(body.model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
if body.task_type == "text-to-text":
generation_config = GenerationConfig(
temperature=body.temperature,
max_new_tokens=body.max_new_tokens,
top_p=body.top_p,
top_k=body.top_k,
repetition_penalty=body.repetition_penalty,
do_sample=body.do_sample,
num_return_sequences=body.num_return_sequences
)
async def stream_text():
input_text = body.input_text
max_length = model.config.max_position_embeddings
generated_text = ""
while True:
inputs = tokenizer(input_text, return_tensors="pt").to(device)
input_length = inputs.input_ids.shape[1]
remaining_tokens = max_length - input_length
if remaining_tokens < body.max_new_tokens:
generation_config.max_new_tokens = remaining_tokens
if remaining_tokens <= 0:
break
output = model.generate(**inputs, generation_config=generation_config)
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
generated_text += chunk
yield chunk
if len(tokenizer.encode(generated_text)) >= max_length:
break
input_text = chunk
if body.stream:
return StreamingResponse(stream_text(), media_type="text/plain")
else:
generated_text = ""
async for chunk in stream_text():
generated_text += chunk
return {"result": generated_text}
elif body.task_type == "text-to-image":
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
image = generator(body.input_text)[0]
image_bytes = image.tobytes()
return Response(content=image_bytes, media_type="image/png")
elif body.task_type == "text-to-speech":
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
audio = generator(body.input_text)
audio_bytesio = BytesIO()
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
audio_bytes = audio_bytesio.getvalue()
return Response(content=audio_bytes, media_type="audio/wav")
elif body.task_type == "text-to-video":
try:
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
video = generator(body.input_text)
return Response(content=video, media_type="video/mp4")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")
else:
raise HTTPException(status_code=400, detail="Unsupported task type")
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Descargar todos los modelos en segundo plano
async def download_all_models_in_background():
models_url = "https://huggingface.co/api/models"
try:
response = requests.get(models_url)
if response.status_code != 200:
raise HTTPException(status_code=500, detail="Error al obtener la lista de modelos.")
models = response.json()
for model in models:
model_name = model["id"]
await model_loader.download_and_save_model_from_huggingface(model_name)
except Exception as e:
raise HTTPException(status_code=500, detail="Error al descargar modelos en segundo plano.")
# Funci贸n que corre en segundo plano para descargar modelos
def run_in_background():
threading.Thread(target=download_all_models_in_background, daemon=True).start()
# Si este archivo se ejecuta directamente, inicia el servidor
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|