Spaces:
Sleeping
Sleeping
import os | |
import logging | |
import boto3 | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from huggingface_hub import hf_hub_download | |
import asyncio | |
# Configuraci贸n de variables | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
AWS_REGION = os.getenv("AWS_REGION") | |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") | |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") | |
MAX_TOKENS = 1024 | |
# Configuraci贸n de cliente S3 | |
s3_client = boto3.client( | |
's3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION | |
) | |
# Inicializaci贸n de la app FastAPI | |
app = FastAPI() | |
# Estructura de solicitudes | |
class GenerateRequest(BaseModel): | |
model_name: str | |
input_text: str | |
task_type: str | |
# Clase para manejo de S3 | |
class S3Manager: | |
def __init__(self, bucket_name): | |
self.bucket_name = bucket_name | |
self.s3_client = s3_client | |
async def get_file(self, key: str): | |
"""Descarga un archivo desde S3.""" | |
loop = asyncio.get_event_loop() | |
return await loop.run_in_executor(None, self._get_file_sync, key) | |
def _get_file_sync(self, key: str): | |
try: | |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key) | |
return response['Body'].read() | |
except self.s3_client.exceptions.NoSuchKey: | |
raise HTTPException(status_code=404, detail=f"Archivo {key} no encontrado en S3.") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al obtener el archivo {key} de S3: {str(e)}") | |
async def upload_file(self, file_path: str, key: str): | |
"""Sube un archivo a S3.""" | |
loop = asyncio.get_event_loop() | |
return await loop.run_in_executor(None, self._upload_file_sync, file_path, key) | |
def _upload_file_sync(self, file_path: str, key: str): | |
try: | |
with open(file_path, "rb") as file: | |
self.s3_client.put_object(Bucket=self.bucket_name, Key=key, Body=file) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al subir {key} a S3: {str(e)}") | |
async def file_exists(self, key: str): | |
"""Verifica si un archivo existe en S3.""" | |
loop = asyncio.get_event_loop() | |
return await loop.run_in_executor(None, self._file_exists_sync, key) | |
def _file_exists_sync(self, key: str): | |
try: | |
self.s3_client.head_object(Bucket=self.bucket_name, Key=key) | |
return True | |
except self.s3_client.exceptions.ClientError: | |
return False | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al verificar existencia de {key}: {str(e)}") | |
async def download_model_files(self, model_name: str): | |
"""Descarga los archivos del modelo desde Hugging Face y los sube a S3 si no est谩n presentes.""" | |
model_name_s3 = model_name.replace("/", "-").lower() | |
files = ["pytorch_model.bin", "tokenizer.json", "config.json"] | |
for file in files: | |
if not await self.file_exists(f"{model_name_s3}/{file}"): | |
local_file = hf_hub_download(repo_id=model_name, filename=file, token=HUGGINGFACE_HUB_TOKEN) | |
await self.upload_file(local_file, f"{model_name_s3}/{file}") | |
async def load_model_from_s3(self, model_name: str): | |
"""Carga el modelo desde S3.""" | |
model_name_s3 = model_name.replace("/", "-").lower() | |
files = { | |
"model": f"{model_name_s3}/pytorch_model.bin", | |
"tokenizer": f"{model_name_s3}/tokenizer.json", | |
"config": f"{model_name_s3}/config.json", | |
} | |
for key, path in files.items(): | |
if not await self.file_exists(path): | |
raise HTTPException(status_code=404, detail=f"Archivo {path} no encontrado en S3.") | |
model_bytes = await self.get_file(files["model"]) | |
tokenizer_bytes = await self.get_file(files["tokenizer"]) | |
config_bytes = await self.get_file(files["config"]) | |
model = AutoModelForCausalLM.from_pretrained(model_bytes, config=config_bytes) | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_bytes) | |
return model, tokenizer | |
async def generate(request: GenerateRequest): | |
try: | |
# Validaciones iniciales | |
if not request.model_name or not request.input_text or not request.task_type: | |
raise HTTPException(status_code=400, detail="Todos los campos son obligatorios.") | |
if request.task_type not in ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]: | |
raise HTTPException(status_code=400, detail="Tipo de tarea no soportado.") | |
# Descarga y carga del modelo | |
s3_manager = S3Manager(S3_BUCKET_NAME) | |
await s3_manager.download_model_files(request.model_name) | |
model, tokenizer = await s3_manager.load_model_from_s3(request.model_name) | |
# Generaci贸n seg煤n el tipo de tarea | |
if request.task_type == "text-to-text": | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
result = generator(request.input_text, max_length=MAX_TOKENS, num_return_sequences=1) | |
return {"result": result[0]["generated_text"]} | |
elif request.task_type == "text-to-image": | |
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer) | |
image = generator(request.input_text) | |
return {"image": image} | |
elif request.task_type == "text-to-speech": | |
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer) | |
audio = generator(request.input_text) | |
return {"audio": audio} | |
elif request.task_type == "text-to-video": | |
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer) | |
video = generator(request.input_text) | |
return {"video": video} | |
except HTTPException as e: | |
raise e | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error en la generaci贸n: {str(e)}") | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |