File size: 6,365 Bytes
410390c
b4532e1
 
ebec48b
 
 
9214e9b
631e498
00a3421
b4532e1
410390c
 
 
0e63678
3e67bfd
631e498
059d70c
410390c
b4532e1
410390c
 
 
 
 
 
 
b4532e1
410390c
 
b4532e1
ebec48b
 
 
b4532e1
ebec48b
b4532e1
 
410390c
 
b4532e1
410390c
b4532e1
 
631e498
b4532e1
631e498
b4532e1
410390c
 
b4532e1
410390c
b4532e1
410390c
b4532e1
410390c
b4532e1
 
9214e9b
b4532e1
9214e9b
b4532e1
9214e9b
b4532e1
 
9214e9b
b4532e1
c1d4983
b4532e1
 
 
 
c1d4983
b4532e1
c1d4983
b4532e1
c1d4983
 
 
b4532e1
 
c1d4983
b4532e1
 
 
 
9214e9b
b4532e1
 
 
 
9214e9b
b4532e1
 
 
 
 
 
 
 
9214e9b
b4532e1
 
 
c1d4983
b4532e1
 
 
c1d4983
b4532e1
 
c1d4983
b4532e1
631e498
14af7ad
ebec48b
410390c
b4532e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebec48b
 
b4532e1
 
 
 
9214e9b
b4532e1
 
 
 
9214e9b
b4532e1
 
 
 
9214e9b
ebec48b
 
0e63678
b4532e1
9214e9b
410390c
0e63678
1642e7d
b4532e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import logging
import boto3
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import hf_hub_download
import asyncio

# Configuraci贸n de variables
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")

MAX_TOKENS = 1024

# Configuraci贸n de cliente S3
s3_client = boto3.client(
    's3',
    aws_access_key_id=AWS_ACCESS_KEY_ID,
    aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
    region_name=AWS_REGION
)

# Inicializaci贸n de la app FastAPI
app = FastAPI()

# Estructura de solicitudes
class GenerateRequest(BaseModel):
    model_name: str
    input_text: str
    task_type: str

# Clase para manejo de S3
class S3Manager:
    def __init__(self, bucket_name):
        self.bucket_name = bucket_name
        self.s3_client = s3_client

    async def get_file(self, key: str):
        """Descarga un archivo desde S3."""
        loop = asyncio.get_event_loop()
        return await loop.run_in_executor(None, self._get_file_sync, key)

    def _get_file_sync(self, key: str):
        try:
            response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
            return response['Body'].read()
        except self.s3_client.exceptions.NoSuchKey:
            raise HTTPException(status_code=404, detail=f"Archivo {key} no encontrado en S3.")
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al obtener el archivo {key} de S3: {str(e)}")

    async def upload_file(self, file_path: str, key: str):
        """Sube un archivo a S3."""
        loop = asyncio.get_event_loop()
        return await loop.run_in_executor(None, self._upload_file_sync, file_path, key)

    def _upload_file_sync(self, file_path: str, key: str):
        try:
            with open(file_path, "rb") as file:
                self.s3_client.put_object(Bucket=self.bucket_name, Key=key, Body=file)
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al subir {key} a S3: {str(e)}")

    async def file_exists(self, key: str):
        """Verifica si un archivo existe en S3."""
        loop = asyncio.get_event_loop()
        return await loop.run_in_executor(None, self._file_exists_sync, key)

    def _file_exists_sync(self, key: str):
        try:
            self.s3_client.head_object(Bucket=self.bucket_name, Key=key)
            return True
        except self.s3_client.exceptions.ClientError:
            return False
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al verificar existencia de {key}: {str(e)}")

    async def download_model_files(self, model_name: str):
        """Descarga los archivos del modelo desde Hugging Face y los sube a S3 si no est谩n presentes."""
        model_name_s3 = model_name.replace("/", "-").lower()
        files = ["pytorch_model.bin", "tokenizer.json", "config.json"]

        for file in files:
            if not await self.file_exists(f"{model_name_s3}/{file}"):
                local_file = hf_hub_download(repo_id=model_name, filename=file, token=HUGGINGFACE_HUB_TOKEN)
                await self.upload_file(local_file, f"{model_name_s3}/{file}")

    async def load_model_from_s3(self, model_name: str):
        """Carga el modelo desde S3."""
        model_name_s3 = model_name.replace("/", "-").lower()
        files = {
            "model": f"{model_name_s3}/pytorch_model.bin",
            "tokenizer": f"{model_name_s3}/tokenizer.json",
            "config": f"{model_name_s3}/config.json",
        }

        for key, path in files.items():
            if not await self.file_exists(path):
                raise HTTPException(status_code=404, detail=f"Archivo {path} no encontrado en S3.")

        model_bytes = await self.get_file(files["model"])
        tokenizer_bytes = await self.get_file(files["tokenizer"])
        config_bytes = await self.get_file(files["config"])

        model = AutoModelForCausalLM.from_pretrained(model_bytes, config=config_bytes)
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_bytes)

        return model, tokenizer

@app.post("/generate")
async def generate(request: GenerateRequest):
    try:
        # Validaciones iniciales
        if not request.model_name or not request.input_text or not request.task_type:
            raise HTTPException(status_code=400, detail="Todos los campos son obligatorios.")

        if request.task_type not in ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]:
            raise HTTPException(status_code=400, detail="Tipo de tarea no soportado.")

        # Descarga y carga del modelo
        s3_manager = S3Manager(S3_BUCKET_NAME)
        await s3_manager.download_model_files(request.model_name)
        model, tokenizer = await s3_manager.load_model_from_s3(request.model_name)

        # Generaci贸n seg煤n el tipo de tarea
        if request.task_type == "text-to-text":
            generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
            result = generator(request.input_text, max_length=MAX_TOKENS, num_return_sequences=1)
            return {"result": result[0]["generated_text"]}

        elif request.task_type == "text-to-image":
            generator = pipeline("text-to-image", model=model, tokenizer=tokenizer)
            image = generator(request.input_text)
            return {"image": image}

        elif request.task_type == "text-to-speech":
            generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer)
            audio = generator(request.input_text)
            return {"audio": audio}

        elif request.task_type == "text-to-video":
            generator = pipeline("text-to-video", model=model, tokenizer=tokenizer)
            video = generator(request.input_text)
            return {"video": video}

    except HTTPException as e:
        raise e
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error en la generaci贸n: {str(e)}")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)