Spaces:
Sleeping
Sleeping
File size: 6,365 Bytes
410390c b4532e1 ebec48b 9214e9b 631e498 00a3421 b4532e1 410390c 0e63678 3e67bfd 631e498 059d70c 410390c b4532e1 410390c b4532e1 410390c b4532e1 ebec48b b4532e1 ebec48b b4532e1 410390c b4532e1 410390c b4532e1 631e498 b4532e1 631e498 b4532e1 410390c b4532e1 410390c b4532e1 410390c b4532e1 410390c b4532e1 9214e9b b4532e1 9214e9b b4532e1 9214e9b b4532e1 9214e9b b4532e1 c1d4983 b4532e1 c1d4983 b4532e1 c1d4983 b4532e1 c1d4983 b4532e1 c1d4983 b4532e1 9214e9b b4532e1 9214e9b b4532e1 9214e9b b4532e1 c1d4983 b4532e1 c1d4983 b4532e1 c1d4983 b4532e1 631e498 14af7ad ebec48b 410390c b4532e1 ebec48b b4532e1 9214e9b b4532e1 9214e9b b4532e1 9214e9b ebec48b 0e63678 b4532e1 9214e9b 410390c 0e63678 1642e7d b4532e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import os
import logging
import boto3
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import hf_hub_download
import asyncio
# Configuraci贸n de variables
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
MAX_TOKENS = 1024
# Configuraci贸n de cliente S3
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
# Inicializaci贸n de la app FastAPI
app = FastAPI()
# Estructura de solicitudes
class GenerateRequest(BaseModel):
model_name: str
input_text: str
task_type: str
# Clase para manejo de S3
class S3Manager:
def __init__(self, bucket_name):
self.bucket_name = bucket_name
self.s3_client = s3_client
async def get_file(self, key: str):
"""Descarga un archivo desde S3."""
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, self._get_file_sync, key)
def _get_file_sync(self, key: str):
try:
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
return response['Body'].read()
except self.s3_client.exceptions.NoSuchKey:
raise HTTPException(status_code=404, detail=f"Archivo {key} no encontrado en S3.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al obtener el archivo {key} de S3: {str(e)}")
async def upload_file(self, file_path: str, key: str):
"""Sube un archivo a S3."""
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, self._upload_file_sync, file_path, key)
def _upload_file_sync(self, file_path: str, key: str):
try:
with open(file_path, "rb") as file:
self.s3_client.put_object(Bucket=self.bucket_name, Key=key, Body=file)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al subir {key} a S3: {str(e)}")
async def file_exists(self, key: str):
"""Verifica si un archivo existe en S3."""
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, self._file_exists_sync, key)
def _file_exists_sync(self, key: str):
try:
self.s3_client.head_object(Bucket=self.bucket_name, Key=key)
return True
except self.s3_client.exceptions.ClientError:
return False
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al verificar existencia de {key}: {str(e)}")
async def download_model_files(self, model_name: str):
"""Descarga los archivos del modelo desde Hugging Face y los sube a S3 si no est谩n presentes."""
model_name_s3 = model_name.replace("/", "-").lower()
files = ["pytorch_model.bin", "tokenizer.json", "config.json"]
for file in files:
if not await self.file_exists(f"{model_name_s3}/{file}"):
local_file = hf_hub_download(repo_id=model_name, filename=file, token=HUGGINGFACE_HUB_TOKEN)
await self.upload_file(local_file, f"{model_name_s3}/{file}")
async def load_model_from_s3(self, model_name: str):
"""Carga el modelo desde S3."""
model_name_s3 = model_name.replace("/", "-").lower()
files = {
"model": f"{model_name_s3}/pytorch_model.bin",
"tokenizer": f"{model_name_s3}/tokenizer.json",
"config": f"{model_name_s3}/config.json",
}
for key, path in files.items():
if not await self.file_exists(path):
raise HTTPException(status_code=404, detail=f"Archivo {path} no encontrado en S3.")
model_bytes = await self.get_file(files["model"])
tokenizer_bytes = await self.get_file(files["tokenizer"])
config_bytes = await self.get_file(files["config"])
model = AutoModelForCausalLM.from_pretrained(model_bytes, config=config_bytes)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_bytes)
return model, tokenizer
@app.post("/generate")
async def generate(request: GenerateRequest):
try:
# Validaciones iniciales
if not request.model_name or not request.input_text or not request.task_type:
raise HTTPException(status_code=400, detail="Todos los campos son obligatorios.")
if request.task_type not in ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]:
raise HTTPException(status_code=400, detail="Tipo de tarea no soportado.")
# Descarga y carga del modelo
s3_manager = S3Manager(S3_BUCKET_NAME)
await s3_manager.download_model_files(request.model_name)
model, tokenizer = await s3_manager.load_model_from_s3(request.model_name)
# Generaci贸n seg煤n el tipo de tarea
if request.task_type == "text-to-text":
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
result = generator(request.input_text, max_length=MAX_TOKENS, num_return_sequences=1)
return {"result": result[0]["generated_text"]}
elif request.task_type == "text-to-image":
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer)
image = generator(request.input_text)
return {"image": image}
elif request.task_type == "text-to-speech":
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer)
audio = generator(request.input_text)
return {"audio": audio}
elif request.task_type == "text-to-video":
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer)
video = generator(request.input_text)
return {"video": video}
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error en la generaci贸n: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|