Spaces:
Sleeping
Sleeping
import os | |
import json | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from huggingface_hub import hf_hub_download | |
import boto3 | |
import logging | |
import asyncio | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
console_handler = logging.StreamHandler() | |
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') | |
console_handler.setFormatter(formatter) | |
logger.addHandler(console_handler) | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
AWS_REGION = os.getenv("AWS_REGION") | |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") | |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") | |
MAX_TOKENS = 1024 | |
s3_client = boto3.client( | |
's3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION | |
) | |
app = FastAPI() | |
class GenerateRequest(BaseModel): | |
model_name: str | |
input_text: str | |
task_type: str | |
class S3DirectStream: | |
def __init__(self, bucket_name): | |
self.s3_client = boto3.client( | |
's3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION | |
) | |
self.bucket_name = bucket_name | |
async def stream_from_s3(self, key): | |
loop = asyncio.get_event_loop() | |
return await loop.run_in_executor(None, self._stream_from_s3, key) | |
def _stream_from_s3(self, key): | |
try: | |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key) | |
return response['Body'].read() | |
except self.s3_client.exceptions.NoSuchKey: | |
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}") | |
async def get_model_file_parts(self, model_name): | |
loop = asyncio.get_event_loop() | |
return await loop.run_in_executor(None, self._get_model_file_parts, model_name) | |
def _get_model_file_parts(self, model_name): | |
try: | |
model_name = model_name.replace("/", "-").lower() | |
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_name) | |
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_name in obj['Key']] | |
return model_files | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}") | |
async def load_model_from_s3(self, model_name): | |
try: | |
model_name = model_name.replace("/", "-").lower() | |
model_files = await self.get_model_file_parts(model_name) | |
if not model_files: | |
await self.download_and_upload_to_s3(model_name) | |
config_data = await self.stream_from_s3(f"{model_name}/config.json") | |
if not config_data: | |
raise HTTPException(status_code=500, detail=f"El archivo de configuración {model_name}/config.json está vacío o no se pudo leer.") | |
if isinstance(config_data, bytes): | |
config_data = config_data.decode("utf-8") | |
config_json = json.loads(config_data) | |
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config_json, from_tf=False) | |
return model | |
except HTTPException as e: | |
raise e | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}") | |
async def load_tokenizer_from_s3(self, model_name): | |
try: | |
model_name = model_name.replace("/", "-").lower() | |
tokenizer_data = await self.stream_from_s3(f"{model_name}/tokenizer.json") | |
if isinstance(tokenizer_data, bytes): | |
tokenizer_data = tokenizer_data.decode("utf-8") | |
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}") | |
return tokenizer | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}") | |
async def create_s3_folders(self, s3_key): | |
try: | |
folder_keys = s3_key.split('-') | |
for i in range(1, len(folder_keys)): | |
folder_key = '-'.join(folder_keys[:i]) + '/' | |
if not await self.file_exists_in_s3(folder_key): | |
logger.info(f"Creando carpeta en S3: {folder_key}") | |
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='') | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}") | |
async def file_exists_in_s3(self, s3_key): | |
try: | |
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key) | |
return True | |
except self.s3_client.exceptions.ClientError: | |
return False | |
async def download_and_upload_to_s3(self, model_name, force_download=False): | |
try: | |
if force_download: | |
logger.info(f"Forzando la descarga del modelo {model_name} y la carga a S3.") | |
model_name = model_name.replace("/", "-").lower() | |
if not await self.file_exists_in_s3(f"{model_name}/config.json") or not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"): | |
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download) | |
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download) | |
await self.create_s3_folders(f"{model_name}/") | |
if not await self.file_exists_in_s3(f"{model_name}/config.json"): | |
with open(config_file, "rb") as file: | |
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file) | |
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"): | |
with open(tokenizer_file, "rb") as file: | |
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file) | |
else: | |
logger.info(f"Los archivos del modelo {model_name} ya existen en S3. No es necesario descargarlos de nuevo.") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}") | |
async def resume_download(self, model_name): | |
try: | |
logger.info(f"Reanudando la descarga del modelo {model_name} desde Hugging Face.") | |
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True) | |
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True) | |
if not await self.file_exists_in_s3(f"{model_name}/config.json"): | |
with open(config_file, "rb") as file: | |
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file) | |
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"): | |
with open(tokenizer_file, "rb") as file: | |
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al reanudar la descarga del modelo: {e}") | |
async def generate(request: GenerateRequest): | |
try: | |
model_name = request.model_name | |
input_text = request.input_text | |
task_type = request.task_type | |
s3_direct_stream = S3DirectStream(S3_BUCKET_NAME) | |
model = await s3_direct_stream.load_model_from_s3(model_name) | |
tokenizer = await s3_direct_stream.load_tokenizer_from_s3(model_name) | |
if task_type == "text-to-text": | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) | |
result = generator(input_text, max_length=MAX_TOKENS, num_return_sequences=1) | |
return {"result": result[0]["generated_text"]} | |
elif task_type == "text-to-image": | |
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=0) | |
image = generator(input_text) | |
return {"result": image} | |
elif task_type == "text-to-speech": | |
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=0) | |
audio = generator(input_text) | |
return {"result": audio} | |
elif task_type == "text-to-video": | |
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=0) | |
video = generator(input_text) | |
return {"result": video} | |
else: | |
raise HTTPException(status_code=400, detail="Tipo de tarea no soportada") | |
except HTTPException as e: | |
raise e | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |