aws_test / app.py
Hjgugugjhuhjggg's picture
Update app.py
f5b9942 verified
raw
history blame
10.4 kB
from huggingface_hub import HfApi
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import requests
import boto3
from dotenv import load_dotenv
import os
import uvicorn
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextIteratorStreamer
import safetensors.torch
import torch
from fastapi.responses import StreamingResponse
from tqdm import tqdm
import logging
import json
load_dotenv()
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
app = FastAPI()
class DownloadModelRequest(BaseModel):
model_name: str
pipeline_task: str
input_text: str
revision: str = "main"
class S3DirectStream:
def __init__(self, bucket_name):
self.s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
self.bucket_name = bucket_name
def stream_from_s3(self, key):
try:
logger.info(f"Downloading {key} from S3...")
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
logger.info(f"Downloaded {key} from S3 successfully.")
return response['Body']
except self.s3_client.exceptions.NoSuchKey:
logger.error(f"File {key} not found in S3")
raise HTTPException(status_code=404, detail=f"File {key} not found in S3")
def file_exists_in_s3(self, key):
try:
self.s3_client.head_object(Bucket=self.bucket_name, Key=key)
logger.info(f"File {key} exists in S3.")
return True
except self.s3_client.exceptions.ClientError:
logger.info(f"File {key} does not exist in S3.")
return False
def load_model_from_stream(self, model_prefix, revision):
try:
logger.info(f"Loading model {model_prefix} (revision {revision})...")
if self.file_exists_in_s3(f"{model_prefix}/config.json") and \
(self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin") or self.file_exists_in_s3(f"{model_prefix}/model.safetensors")):
logger.info(f"Model {model_prefix} found in S3. Loading...")
return self.load_model_from_existing_s3(model_prefix)
logger.info(f"Model {model_prefix} not found in S3. Downloading and uploading...")
self.download_and_upload_to_s3(model_prefix, revision)
logger.info(f"Downloaded and uploaded {model_prefix}. Loading from S3...")
return self.load_model_from_stream(model_prefix, revision)
except HTTPException as e:
logger.error(f"Error loading model: {e}")
return None
def load_model_from_existing_s3(self, model_prefix):
logger.info(f"Loading config for {model_prefix} from S3...")
config_stream = self.stream_from_s3(f"{model_prefix}/config.json")
config_dict = json.load(config_stream)
config = AutoConfig.from_pretrained(config_dict)
logger.info(f"Config loaded for {model_prefix}.")
if self.file_exists_in_s3(f"{model_prefix}/model.safetensors"):
logger.info(f"Loading safetensors model for {model_prefix} from S3...")
model_stream = self.stream_from_s3(f"{model_prefix}/model.safetensors")
model = AutoModelForCausalLM.from_config(config)
model.load_state_dict(safetensors.torch.load_stream(model_stream))
logger.info(f"Safetensors model loaded for {model_prefix}.")
elif self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin"):
logger.info(f"Loading PyTorch model for {model_prefix} from S3...")
model_stream = self.stream_from_s3(f"{model_prefix}/pytorch_model.bin")
model = AutoModelForCausalLM.from_config(config)
state_dict = torch.load(model_stream, map_location="cpu")
model.load_state_dict(state_dict)
logger.info(f"PyTorch model loaded for {model_prefix}.")
else:
logger.error(f"No model file found for {model_prefix} in S3")
raise EnvironmentError(f"No model file found for {model_prefix} in S3")
return model
def load_tokenizer_from_stream(self, model_prefix):
try:
logger.info(f"Loading tokenizer for {model_prefix}...")
if self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"):
logger.info(f"Tokenizer for {model_prefix} found in S3. Loading...")
return self.load_tokenizer_from_existing_s3(model_prefix)
logger.info(f"Tokenizer for {model_prefix} not found in S3. Downloading and uploading...")
self.download_and_upload_to_s3(model_prefix)
logger.info(f"Downloaded and uploaded tokenizer for {model_prefix}. Loading from S3...")
return self.load_tokenizer_from_stream(model_prefix)
except HTTPException as e:
logger.error(f"Error loading tokenizer: {e}")
return None
def load_tokenizer_from_existing_s3(self, model_prefix):
logger.info(f"Loading tokenizer from S3 for {model_prefix}...")
tokenizer_stream = self.stream_from_s3(f"{model_prefix}/tokenizer.json")
tokenizer_config = json.load(tokenizer_stream) # Corrected this line
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=None, config=tokenizer_config) # Corrected this line
logger.info(f"Tokenizer loaded for {model_prefix}.")
return tokenizer
def download_and_upload_to_s3(self, model_prefix, revision="main"):
model_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/pytorch_model.bin"
safetensors_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/model.safetensors"
tokenizer_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/tokenizer.json"
config_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/config.json"
logger.info(f"Downloading and uploading model files for {model_prefix} to S3...")
self.download_and_upload_to_s3_url(model_url, f"{model_prefix}/pytorch_model.bin")
self.download_and_upload_to_s3_url(safetensors_url, f"{model_prefix}/model.safetensors")
self.download_and_upload_to_s3_url(tokenizer_url, f"{model_prefix}/tokenizer.json")
self.download_and_upload_to_s3_url(config_url, f"{model_prefix}/config.json")
logger.info(f"Finished downloading and uploading model files for {model_prefix}.")
def download_and_upload_to_s3_url(self, url, s3_key):
logger.info(f"Downloading from {url}...")
with requests.get(url, stream=True) as response:
if response.status_code == 200:
total_size_in_bytes= int(response.headers.get('content-length', 0))
block_size = 1024
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
logger.info(f"Uploading to S3: {s3_key}...")
self.s3_client.upload_fileobj(response.raw, self.bucket_name, s3_key, Callback=lambda bytes_transferred: progress_bar.update(bytes_transferred))
progress_bar.close()
logger.info(f"Uploaded {s3_key} to S3 successfully.")
elif response.status_code == 404:
logger.error(f"File not found at {url}")
raise HTTPException(status_code=404, detail=f"Error downloading file from {url}. File not found.")
else:
logger.error(f"Error downloading from {url}: Status code {response.status_code}")
raise HTTPException(status_code=500, detail=f"Error downloading file from {url}")
@app.post("/predict/")
async def predict(model_request: DownloadModelRequest):
try:
logger.info(f"Received request: Model={model_request.model_name}, Task={model_request.pipeline_task}, Input={model_request.input_text}")
model_name = model_request.model_name
revision = model_request.revision
streamer = S3DirectStream(S3_BUCKET_NAME)
logger.info("Loading model and tokenizer...")
model = streamer.load_model_from_stream(model_name, revision)
tokenizer = streamer.load_tokenizer_from_stream(model_name)
logger.info("Model and tokenizer loaded.")
task = model_request.pipeline_task
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering", "summarization", "zero-shot-classification"]:
raise HTTPException(status_code=400, detail="Unsupported pipeline task")
if task == "text-generation":
logger.info("Starting text generation...")
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
inputs = tokenizer(model_request.input_text, return_tensors="pt").to(model.device)
generation_kwargs = dict(inputs, streamer=text_streamer)
model.generate(**generation_kwargs)
logger.info("Text generation finished.")
return StreamingResponse(iter([tokenizer.decode(token) for token in text_streamer]), media_type="text/event-stream")
else:
logger.info(f"Starting pipeline task: {task}...")
nlp_pipeline = pipeline(task, model=model, tokenizer=tokenizer, device_map="auto", trust_remote_code=True)
outputs = nlp_pipeline(model_request.input_text)
logger.info(f"Pipeline task {task} finished.")
return {"result": outputs}
except Exception as e:
logger.exception(f"Error processing request: {e}")
raise HTTPException(status_code=500, detail=f"Error processing request: {str(e)}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)