aws_test / app.py
Hjgugugjhuhjggg's picture
Update app.py
f8e43db verified
raw
history blame
7.63 kB
import os
import json
import logging
import boto3
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import asyncio
import concurrent.futures
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
MAX_TOKENS = 1024 # Limite de tokens por fragmento
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
app = FastAPI()
PIPELINE_MAP = {
"text-generation": "text-generation",
"sentiment-analysis": "sentiment-analysis",
"translation": "translation",
"fill-mask": "fill-mask",
"question-answering": "question-answering",
"text-to-speech": "text-to-speech",
"text-to-video": "text-to-video",
"text-to-image": "text-to-image"
}
class S3DirectStream:
def __init__(self, bucket_name):
self.s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
self.bucket_name = bucket_name
async def stream_from_s3(self, key):
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, self._stream_from_s3, key)
def _stream_from_s3(self, key):
try:
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
return response['Body']
except self.s3_client.exceptions.NoSuchKey:
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")
async def get_model_file_parts(self, model_name):
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, self._get_model_file_parts, model_name)
def _get_model_file_parts(self, model_name):
try:
model_prefix = model_name.lower()
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_prefix)
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_prefix in obj['Key']]
return model_files
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
async def load_model_from_s3(self, model_name):
try:
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)
model_prefix = f"{profile}/{model}".lower()
model_files = await self.get_model_file_parts(model_prefix)
if not model_files:
raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados en S3.")
config_stream = await self.stream_from_s3(f"{model_prefix}/config.json")
config_data = config_stream.read()
if not config_data:
raise HTTPException(status_code=500, detail=f"El archivo de configuraci贸n {model_prefix}/config.json est谩 vac铆o.")
config_text = config_data.decode("utf-8")
config_json = json.loads(config_text)
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_prefix}", config=config_json, from_tf=False)
return model
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}")
async def load_tokenizer_from_s3(self, model_name):
try:
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)
tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
tokenizer_data = tokenizer_stream.read().decode("utf-8")
tokenizer = AutoTokenizer.from_pretrained(f"{profile}/{model}")
return tokenizer
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
async def create_s3_folders(self, s3_key):
try:
folder_keys = s3_key.split('/')
for i in range(1, len(folder_keys)):
folder_key = '/'.join(folder_keys[:i]) + '/'
if not await self.file_exists_in_s3(folder_key):
logger.info(f"Creando carpeta en S3: {folder_key}")
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}")
async def file_exists_in_s3(self, s3_key):
try:
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key)
return True
except self.s3_client.exceptions.ClientError:
return False
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
tokens = tokenizer.encode(text)
chunks = []
for i in range(0, len(tokens), max_tokens):
chunk = tokens[i:i+max_tokens]
chunks.append(tokenizer.decode(chunk))
return chunks
def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS):
generated_text = ""
while len(input_text) > 0:
tokens = tokenizer.encode(input_text)
input_text = tokenizer.decode(tokens[:max_tokens])
output = model.generate(input_ids=tokenizer.encode(input_text, return_tensors="pt").input_ids)
generated_text += tokenizer.decode(output[0], skip_special_tokens=True)
input_text = input_text[len(input_text):] # Si la entrada se agot贸, ya no hay m谩s que procesar
return generated_text
@app.post("/predict/")
async def predict(model_request: dict):
try:
model_name = model_request.get("model_name")
task = model_request.get("pipeline_task")
input_text = model_request.get("input_text")
if not model_name or not task or not input_text:
raise HTTPException(status_code=400, detail="Faltan par谩metros en la solicitud.")
streamer = S3DirectStream(S3_BUCKET_NAME)
await streamer.create_s3_folders(model_name) # Crear las carpetas si no existen
model = await streamer.load_model_from_s3(model_name)
tokenizer = await streamer.load_tokenizer_from_s3(model_name)
if task not in PIPELINE_MAP:
raise HTTPException(status_code=400, detail="Pipeline task no soportado")
nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer)
result = await asyncio.to_thread(nlp_pipeline, input_text)
chunks = split_text_by_tokens(result, tokenizer)
if len(chunks) > 1:
full_result = ""
for chunk in chunks:
full_result += continue_generation(chunk, model, tokenizer)
return JSONResponse(content={"result": full_result})
else:
return JSONResponse(content={"result": result})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al realizar la predicci贸n: {e}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)