Spaces:
Sleeping
Sleeping
import os | |
import json | |
import logging | |
import boto3 | |
from fastapi import FastAPI, HTTPException | |
from fastapi.responses import JSONResponse | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
import asyncio | |
import concurrent.futures | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
AWS_REGION = os.getenv("AWS_REGION") | |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") | |
MAX_TOKENS = 1024 # Limite de tokens por fragmento | |
s3_client = boto3.client( | |
's3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION | |
) | |
app = FastAPI() | |
PIPELINE_MAP = { | |
"text-generation": "text-generation", | |
"sentiment-analysis": "sentiment-analysis", | |
"translation": "translation", | |
"fill-mask": "fill-mask", | |
"question-answering": "question-answering", | |
"text-to-speech": "text-to-speech", | |
"text-to-video": "text-to-video", | |
"text-to-image": "text-to-image" | |
} | |
class S3DirectStream: | |
def __init__(self, bucket_name): | |
self.s3_client = boto3.client( | |
's3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION | |
) | |
self.bucket_name = bucket_name | |
async def stream_from_s3(self, key): | |
loop = asyncio.get_event_loop() | |
return await loop.run_in_executor(None, self._stream_from_s3, key) | |
def _stream_from_s3(self, key): | |
try: | |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key) | |
return response['Body'] | |
except self.s3_client.exceptions.NoSuchKey: | |
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}") | |
async def get_model_file_parts(self, model_name): | |
loop = asyncio.get_event_loop() | |
return await loop.run_in_executor(None, self._get_model_file_parts, model_name) | |
def _get_model_file_parts(self, model_name): | |
try: | |
model_prefix = model_name.lower() | |
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_prefix) | |
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_prefix in obj['Key']] | |
return model_files | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}") | |
async def load_model_from_s3(self, model_name): | |
try: | |
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name) | |
model_prefix = f"{profile}/{model}".lower() | |
model_files = await self.get_model_file_parts(model_prefix) | |
if not model_files: | |
raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados en S3.") | |
config_stream = await self.stream_from_s3(f"{model_prefix}/config.json") | |
config_data = config_stream.read() | |
if not config_data: | |
raise HTTPException(status_code=500, detail=f"El archivo de configuraci贸n {model_prefix}/config.json est谩 vac铆o.") | |
config_text = config_data.decode("utf-8") | |
config_json = json.loads(config_text) | |
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_prefix}", config=config_json, from_tf=False) | |
return model | |
except HTTPException as e: | |
raise e | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}") | |
async def load_tokenizer_from_s3(self, model_name): | |
try: | |
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name) | |
tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json") | |
tokenizer_data = tokenizer_stream.read().decode("utf-8") | |
tokenizer = AutoTokenizer.from_pretrained(f"{profile}/{model}") | |
return tokenizer | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}") | |
async def create_s3_folders(self, s3_key): | |
try: | |
folder_keys = s3_key.split('/') | |
for i in range(1, len(folder_keys)): | |
folder_key = '/'.join(folder_keys[:i]) + '/' | |
if not await self.file_exists_in_s3(folder_key): | |
logger.info(f"Creando carpeta en S3: {folder_key}") | |
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='') | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}") | |
async def file_exists_in_s3(self, s3_key): | |
try: | |
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key) | |
return True | |
except self.s3_client.exceptions.ClientError: | |
return False | |
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS): | |
tokens = tokenizer.encode(text) | |
chunks = [] | |
for i in range(0, len(tokens), max_tokens): | |
chunk = tokens[i:i+max_tokens] | |
chunks.append(tokenizer.decode(chunk)) | |
return chunks | |
def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS): | |
generated_text = "" | |
while len(input_text) > 0: | |
tokens = tokenizer.encode(input_text) | |
input_text = tokenizer.decode(tokens[:max_tokens]) | |
output = model.generate(input_ids=tokenizer.encode(input_text, return_tensors="pt").input_ids) | |
generated_text += tokenizer.decode(output[0], skip_special_tokens=True) | |
input_text = input_text[len(input_text):] # Si la entrada se agot贸, ya no hay m谩s que procesar | |
return generated_text | |
async def predict(model_request: dict): | |
try: | |
model_name = model_request.get("model_name") | |
task = model_request.get("pipeline_task") | |
input_text = model_request.get("input_text") | |
if not model_name or not task or not input_text: | |
raise HTTPException(status_code=400, detail="Faltan par谩metros en la solicitud.") | |
streamer = S3DirectStream(S3_BUCKET_NAME) | |
await streamer.create_s3_folders(model_name) # Crear las carpetas si no existen | |
model = await streamer.load_model_from_s3(model_name) | |
tokenizer = await streamer.load_tokenizer_from_s3(model_name) | |
if task not in PIPELINE_MAP: | |
raise HTTPException(status_code=400, detail="Pipeline task no soportado") | |
nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer) | |
result = await asyncio.to_thread(nlp_pipeline, input_text) | |
chunks = split_text_by_tokens(result, tokenizer) | |
if len(chunks) > 1: | |
full_result = "" | |
for chunk in chunks: | |
full_result += continue_generation(chunk, model, tokenizer) | |
return JSONResponse(content={"result": full_result}) | |
else: | |
return JSONResponse(content={"result": result}) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al realizar la predicci贸n: {e}") | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |