Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,8 @@ from transformers import (
|
|
9 |
AutoModelForCausalLM,
|
10 |
AutoTokenizer,
|
11 |
GenerationConfig,
|
|
|
|
|
12 |
)
|
13 |
import boto3
|
14 |
import uvicorn
|
@@ -43,7 +45,7 @@ class GenerateRequest(BaseModel):
|
|
43 |
input_text: str = ""
|
44 |
task_type: str
|
45 |
temperature: float = 1.0
|
46 |
-
max_new_tokens: int = 3
|
47 |
stream: bool = True
|
48 |
top_p: float = 1.0
|
49 |
top_k: int = 50
|
@@ -92,33 +94,44 @@ class S3ModelLoader:
|
|
92 |
)
|
93 |
|
94 |
tokenizer = AutoTokenizer.from_pretrained(
|
95 |
-
s3_uri, config=config, local_files_only=False
|
96 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
or tokenizer.eos_token_id
|
102 |
-
model_cache[model_name] = (model, tokenizer)
|
103 |
-
return model, tokenizer
|
104 |
except (EnvironmentError, NoCredentialsError):
|
105 |
try:
|
106 |
config = AutoConfig.from_pretrained(
|
107 |
model_name, token=HUGGINGFACE_HUB_TOKEN
|
108 |
)
|
109 |
tokenizer = AutoTokenizer.from_pretrained(
|
110 |
-
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
111 |
)
|
112 |
|
113 |
model = AutoModelForCausalLM.from_pretrained(
|
114 |
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
115 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
tokenizer.pad_token_id = config.pad_token_id \
|
121 |
-
or tokenizer.eos_token_id
|
122 |
|
123 |
|
124 |
model.save_pretrained(s3_uri)
|
@@ -134,10 +147,22 @@ class S3ModelLoader:
|
|
134 |
)
|
135 |
|
136 |
tokenizer = AutoTokenizer.from_pretrained(
|
137 |
-
s3_uri, config=config, local_files_only=False
|
138 |
)
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
except Exception as e:
|
142 |
raise HTTPException(
|
143 |
status_code=500, detail=f"Error loading model: {e}"
|
@@ -145,6 +170,31 @@ class S3ModelLoader:
|
|
145 |
|
146 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
@app.post("/generate")
|
149 |
async def generate(request: GenerateRequest):
|
150 |
try:
|
@@ -161,7 +211,7 @@ async def generate(request: GenerateRequest):
|
|
161 |
do_sample = request.do_sample
|
162 |
stop_sequences = request.stop_sequences
|
163 |
|
164 |
-
model, tokenizer = await model_loader.load_model_and_tokenizer(model_name)
|
165 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
166 |
model.to(device)
|
167 |
|
@@ -174,14 +224,30 @@ async def generate(request: GenerateRequest):
|
|
174 |
repetition_penalty=repetition_penalty,
|
175 |
do_sample=do_sample,
|
176 |
num_return_sequences=num_return_sequences,
|
|
|
177 |
)
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
|
181 |
generation_config, stop_sequences,
|
182 |
-
device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
media_type="text/plain"
|
184 |
)
|
|
|
185 |
else:
|
186 |
return HTTPException(status_code=400, detail="Task type not text-to-text")
|
187 |
|
@@ -193,11 +259,13 @@ async def generate(request: GenerateRequest):
|
|
193 |
|
194 |
async def stream_text(model, tokenizer, input_text,
|
195 |
generation_config, stop_sequences,
|
196 |
-
device):
|
197 |
-
|
198 |
encoded_input = tokenizer(
|
199 |
input_text, return_tensors="pt",
|
200 |
-
truncation=True
|
|
|
|
|
201 |
).to(device)
|
202 |
|
203 |
stop_regex = re.compile(r'[\.\?\!\n]+')
|
@@ -216,6 +284,8 @@ async def stream_text(model, tokenizer, input_text,
|
|
216 |
|
217 |
|
218 |
output_text = ""
|
|
|
|
|
219 |
while True:
|
220 |
outputs = model.generate(
|
221 |
**encoded_input,
|
@@ -228,8 +298,10 @@ async def stream_text(model, tokenizer, input_text,
|
|
228 |
num_return_sequences=generation_config.num_return_sequences,
|
229 |
output_scores=True,
|
230 |
return_dict_in_generate=True,
|
|
|
|
|
231 |
)
|
232 |
-
|
233 |
new_text = tokenizer.decode(
|
234 |
outputs.sequences[0][len(encoded_input["input_ids"][0]):],
|
235 |
skip_special_tokens=True
|
@@ -243,22 +315,32 @@ async def stream_text(model, tokenizer, input_text,
|
|
243 |
final_output = output_text[:stop_index]
|
244 |
|
245 |
for text in final_output.split():
|
246 |
-
|
247 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
248 |
break
|
249 |
else:
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
if len(new_text) == 0:
|
|
|
254 |
for text in output_text.split():
|
255 |
-
|
256 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
257 |
break
|
258 |
-
|
259 |
encoded_input = tokenizer(
|
260 |
-
|
261 |
-
truncation=True
|
|
|
|
|
262 |
).to(device)
|
263 |
output_text = ""
|
264 |
|
|
|
9 |
AutoModelForCausalLM,
|
10 |
AutoTokenizer,
|
11 |
GenerationConfig,
|
12 |
+
StoppingCriteria,
|
13 |
+
StoppingCriteriaList
|
14 |
)
|
15 |
import boto3
|
16 |
import uvicorn
|
|
|
45 |
input_text: str = ""
|
46 |
task_type: str
|
47 |
temperature: float = 1.0
|
48 |
+
max_new_tokens: int = 3
|
49 |
stream: bool = True
|
50 |
top_p: float = 1.0
|
51 |
top_k: int = 50
|
|
|
94 |
)
|
95 |
|
96 |
tokenizer = AutoTokenizer.from_pretrained(
|
97 |
+
s3_uri, config=config, local_files_only=False, padding_side="left"
|
98 |
)
|
99 |
+
|
100 |
+
eos_token_id = tokenizer.eos_token_id
|
101 |
+
pad_token_id = tokenizer.pad_token_id
|
102 |
+
eos_token = tokenizer.eos_token
|
103 |
+
pad_token = tokenizer.pad_token
|
104 |
+
padding = tokenizer.padding_side
|
105 |
+
|
106 |
+
if eos_token_id is not None and pad_token_id is None:
|
107 |
+
pad_token_id = config.pad_token_id or eos_token_id
|
108 |
+
tokenizer.pad_token_id = pad_token_id
|
109 |
|
110 |
+
model_cache[model_name] = (model, tokenizer,eos_token_id,
|
111 |
+
pad_token_id,eos_token,pad_token,padding)
|
112 |
+
return model, tokenizer,eos_token_id,pad_token_id,eos_token,pad_token,padding
|
|
|
|
|
|
|
113 |
except (EnvironmentError, NoCredentialsError):
|
114 |
try:
|
115 |
config = AutoConfig.from_pretrained(
|
116 |
model_name, token=HUGGINGFACE_HUB_TOKEN
|
117 |
)
|
118 |
tokenizer = AutoTokenizer.from_pretrained(
|
119 |
+
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN, padding_side="left"
|
120 |
)
|
121 |
|
122 |
model = AutoModelForCausalLM.from_pretrained(
|
123 |
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
124 |
)
|
125 |
+
|
126 |
+
eos_token_id = tokenizer.eos_token_id
|
127 |
+
pad_token_id = tokenizer.pad_token_id
|
128 |
+
eos_token = tokenizer.eos_token
|
129 |
+
pad_token = tokenizer.pad_token
|
130 |
+
padding = tokenizer.padding_side
|
131 |
|
132 |
+
if eos_token_id is not None and pad_token_id is None:
|
133 |
+
pad_token_id = config.pad_token_id or eos_token_id
|
134 |
+
tokenizer.pad_token_id = pad_token_id
|
|
|
|
|
135 |
|
136 |
|
137 |
model.save_pretrained(s3_uri)
|
|
|
147 |
)
|
148 |
|
149 |
tokenizer = AutoTokenizer.from_pretrained(
|
150 |
+
s3_uri, config=config, local_files_only=False, padding_side="left"
|
151 |
)
|
152 |
+
|
153 |
+
eos_token_id = tokenizer.eos_token_id
|
154 |
+
pad_token_id = tokenizer.pad_token_id
|
155 |
+
eos_token = tokenizer.eos_token
|
156 |
+
pad_token = tokenizer.pad_token
|
157 |
+
padding = tokenizer.padding_side
|
158 |
+
|
159 |
+
if eos_token_id is not None and pad_token_id is None:
|
160 |
+
pad_token_id = config.pad_token_id or eos_token_id
|
161 |
+
tokenizer.pad_token_id = pad_token_id
|
162 |
+
|
163 |
+
model_cache[model_name] = (model, tokenizer,eos_token_id,
|
164 |
+
pad_token_id,eos_token,pad_token,padding)
|
165 |
+
return model, tokenizer,eos_token_id,pad_token_id,eos_token,pad_token,padding
|
166 |
except Exception as e:
|
167 |
raise HTTPException(
|
168 |
status_code=500, detail=f"Error loading model: {e}"
|
|
|
170 |
|
171 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
172 |
|
173 |
+
class StopOnSequencesCriteria(StoppingCriteria):
|
174 |
+
def __init__(self, stop_sequences, tokenizer):
|
175 |
+
self.stop_sequences = stop_sequences
|
176 |
+
self.tokenizer = tokenizer
|
177 |
+
|
178 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
179 |
+
|
180 |
+
decoded_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
181 |
+
|
182 |
+
for seq in self.stop_sequences:
|
183 |
+
if seq in decoded_text:
|
184 |
+
return True
|
185 |
+
return False
|
186 |
+
|
187 |
+
async def generate_stream(model, tokenizer, input_text,
|
188 |
+
generation_config, stop_sequences,
|
189 |
+
device, pad_token_id, max_model_length,
|
190 |
+
max_new_tokens):
|
191 |
+
async def stream():
|
192 |
+
async for token in stream_text(model, tokenizer, input_text,
|
193 |
+
generation_config, stop_sequences,
|
194 |
+
device,pad_token_id, max_model_length, max_new_tokens):
|
195 |
+
yield token
|
196 |
+
return stream()
|
197 |
+
|
198 |
@app.post("/generate")
|
199 |
async def generate(request: GenerateRequest):
|
200 |
try:
|
|
|
211 |
do_sample = request.do_sample
|
212 |
stop_sequences = request.stop_sequences
|
213 |
|
214 |
+
model, tokenizer, eos_token_id, pad_token_id, eos_token, pad_token, padding = await model_loader.load_model_and_tokenizer(model_name)
|
215 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
216 |
model.to(device)
|
217 |
|
|
|
224 |
repetition_penalty=repetition_penalty,
|
225 |
do_sample=do_sample,
|
226 |
num_return_sequences=num_return_sequences,
|
227 |
+
pad_token_id=pad_token_id if pad_token_id is not None else None
|
228 |
)
|
229 |
+
|
230 |
+
max_model_length = model.config.max_position_embeddings
|
231 |
+
input_text = input_text[:max_model_length]
|
232 |
|
233 |
+
streams = [
|
234 |
+
generate_stream(model, tokenizer, input_text,
|
235 |
generation_config, stop_sequences,
|
236 |
+
device,pad_token_id, max_model_length, max_new_tokens)
|
237 |
+
for _ in range(num_return_sequences)
|
238 |
+
]
|
239 |
+
|
240 |
+
|
241 |
+
async def stream_response():
|
242 |
+
async for results in asyncio.as_completed(streams):
|
243 |
+
async for chunk in await results:
|
244 |
+
yield chunk
|
245 |
+
|
246 |
+
return StreamingResponse(
|
247 |
+
stream_response(),
|
248 |
media_type="text/plain"
|
249 |
)
|
250 |
+
|
251 |
else:
|
252 |
return HTTPException(status_code=400, detail="Task type not text-to-text")
|
253 |
|
|
|
259 |
|
260 |
async def stream_text(model, tokenizer, input_text,
|
261 |
generation_config, stop_sequences,
|
262 |
+
device,pad_token_id, max_model_length, max_new_tokens):
|
263 |
+
|
264 |
encoded_input = tokenizer(
|
265 |
input_text, return_tensors="pt",
|
266 |
+
truncation=True,
|
267 |
+
padding = "max_length",
|
268 |
+
max_length=max_model_length
|
269 |
).to(device)
|
270 |
|
271 |
stop_regex = re.compile(r'[\.\?\!\n]+')
|
|
|
284 |
|
285 |
|
286 |
output_text = ""
|
287 |
+
stop_criteria = StoppingCriteriaList([StopOnSequencesCriteria(stop_sequences, tokenizer)])
|
288 |
+
|
289 |
while True:
|
290 |
outputs = model.generate(
|
291 |
**encoded_input,
|
|
|
298 |
num_return_sequences=generation_config.num_return_sequences,
|
299 |
output_scores=True,
|
300 |
return_dict_in_generate=True,
|
301 |
+
pad_token_id=pad_token_id if pad_token_id is not None else None,
|
302 |
+
stopping_criteria = stop_criteria
|
303 |
)
|
304 |
+
|
305 |
new_text = tokenizer.decode(
|
306 |
outputs.sequences[0][len(encoded_input["input_ids"][0]):],
|
307 |
skip_special_tokens=True
|
|
|
315 |
final_output = output_text[:stop_index]
|
316 |
|
317 |
for text in final_output.split():
|
318 |
+
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
319 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
320 |
break
|
321 |
else:
|
322 |
+
|
323 |
+
tokens = new_text.split()
|
324 |
+
|
325 |
+
|
326 |
+
for i in range(0, len(tokens), max_new_tokens):
|
327 |
+
chunk = tokens[i:i + max_new_tokens]
|
328 |
+
chunk_text = " ".join(chunk)
|
329 |
+
for text in chunk_text.split():
|
330 |
+
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
331 |
|
332 |
if len(new_text) == 0:
|
333 |
+
|
334 |
for text in output_text.split():
|
335 |
+
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
336 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
337 |
break
|
338 |
+
|
339 |
encoded_input = tokenizer(
|
340 |
+
output_text, return_tensors="pt",
|
341 |
+
truncation=True,
|
342 |
+
padding = "max_length" ,
|
343 |
+
max_length = max_model_length
|
344 |
).to(device)
|
345 |
output_text = ""
|
346 |
|