Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Rename app.py to app.py.bkk
Browse files- app.py → app.py.bkk +65 -80
app.py → app.py.bkk
RENAMED
@@ -2,13 +2,12 @@ import os
|
|
2 |
import json
|
3 |
import logging
|
4 |
import boto3
|
5 |
-
from fastapi import FastAPI, HTTPException
|
6 |
from fastapi.responses import JSONResponse
|
7 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
import asyncio
|
10 |
|
11 |
-
# Configuración del logger
|
12 |
logger = logging.getLogger(__name__)
|
13 |
logger.setLevel(logging.INFO)
|
14 |
console_handler = logging.StreamHandler()
|
@@ -33,17 +32,6 @@ s3_client = boto3.client(
|
|
33 |
|
34 |
app = FastAPI()
|
35 |
|
36 |
-
PIPELINE_MAP = {
|
37 |
-
"text-generation": "text-generation",
|
38 |
-
"sentiment-analysis": "sentiment-analysis",
|
39 |
-
"translation": "translation",
|
40 |
-
"fill-mask": "fill-mask",
|
41 |
-
"question-answering": "question-answering",
|
42 |
-
"text-to-speech": "text-to-speech",
|
43 |
-
"text-to-video": "text-to-video",
|
44 |
-
"text-to-image": "text-to-image"
|
45 |
-
}
|
46 |
-
|
47 |
class S3DirectStream:
|
48 |
def __init__(self, bucket_name):
|
49 |
self.s3_client = boto3.client(
|
@@ -73,33 +61,31 @@ class S3DirectStream:
|
|
73 |
|
74 |
def _get_model_file_parts(self, model_name):
|
75 |
try:
|
76 |
-
|
77 |
-
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=
|
78 |
-
model_files = [obj['Key'] for obj in files.get('Contents', []) if
|
79 |
return model_files
|
80 |
except Exception as e:
|
81 |
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
|
82 |
|
83 |
async def load_model_from_s3(self, model_name):
|
84 |
try:
|
85 |
-
|
86 |
-
|
87 |
-
model_prefix = f"{profile}/{model}".lower()
|
88 |
-
model_files = await self.get_model_file_parts(model_prefix)
|
89 |
|
90 |
if not model_files:
|
91 |
-
await self.download_and_upload_to_s3(
|
92 |
|
93 |
-
config_stream = await self.stream_from_s3(f"{
|
94 |
config_data = config_stream.read()
|
95 |
|
96 |
if not config_data:
|
97 |
-
raise HTTPException(status_code=500, detail=f"El archivo de configuración {
|
98 |
|
99 |
config_text = config_data.decode("utf-8")
|
100 |
config_json = json.loads(config_text)
|
101 |
|
102 |
-
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{
|
103 |
return model
|
104 |
|
105 |
except HTTPException as e:
|
@@ -109,21 +95,20 @@ class S3DirectStream:
|
|
109 |
|
110 |
async def load_tokenizer_from_s3(self, model_name):
|
111 |
try:
|
112 |
-
|
113 |
-
|
114 |
-
tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
|
115 |
tokenizer_data = tokenizer_stream.read().decode("utf-8")
|
116 |
|
117 |
-
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{
|
118 |
return tokenizer
|
119 |
except Exception as e:
|
120 |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
121 |
|
122 |
async def create_s3_folders(self, s3_key):
|
123 |
try:
|
124 |
-
folder_keys = s3_key.split('
|
125 |
for i in range(1, len(folder_keys)):
|
126 |
-
folder_key = '
|
127 |
if not await self.file_exists_in_s3(folder_key):
|
128 |
logger.info(f"Creando carpeta en S3: {folder_key}")
|
129 |
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')
|
@@ -138,21 +123,48 @@ class S3DirectStream:
|
|
138 |
except self.s3_client.exceptions.ClientError:
|
139 |
return False
|
140 |
|
141 |
-
async def download_and_upload_to_s3(self,
|
142 |
try:
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
with open(config_file, "rb") as file:
|
148 |
-
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{
|
149 |
|
150 |
-
if not await self.file_exists_in_s3(f"{
|
151 |
with open(tokenizer_file, "rb") as file:
|
152 |
-
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{
|
153 |
|
154 |
except Exception as e:
|
155 |
-
raise HTTPException(status_code=500, detail=f"Error al
|
156 |
|
157 |
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
|
158 |
tokens = tokenizer.encode(text)
|
@@ -165,54 +177,27 @@ def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
|
|
165 |
def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS):
|
166 |
generated_text = ""
|
167 |
while len(input_text) > 0:
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
generated_text += tokenizer.decode(output[0], skip_special_tokens=True)
|
172 |
-
input_text = input_text[len(input_text):]
|
173 |
return generated_text
|
174 |
|
175 |
-
@app.post("/
|
176 |
-
async def
|
177 |
try:
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
if not model_name or not task or not input_text:
|
183 |
-
raise HTTPException(status_code=400, detail="Faltan parámetros en la solicitud.")
|
184 |
-
|
185 |
-
streamer = S3DirectStream(S3_BUCKET_NAME)
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
model = await streamer.load_model_from_s3(model_name)
|
190 |
-
tokenizer = await streamer.load_tokenizer_from_s3(model_name)
|
191 |
-
|
192 |
-
if task not in PIPELINE_MAP:
|
193 |
-
raise HTTPException(status_code=400, detail="Pipeline task no soportado")
|
194 |
-
|
195 |
-
nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer)
|
196 |
-
|
197 |
-
result = await asyncio.to_thread(nlp_pipeline, input_text)
|
198 |
-
|
199 |
-
if len(result) > MAX_TOKENS:
|
200 |
-
chunks = split_text_by_tokens(result, tokenizer)
|
201 |
-
full_result = ""
|
202 |
-
for chunk in chunks:
|
203 |
-
full_result += continue_generation(chunk, model, tokenizer)
|
204 |
-
return {"result": full_result}
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
logger.error(f"Error al realizar la predicción: {str(e.detail)}")
|
210 |
-
return JSONResponse(status_code=e.status_code, content={"detail": str(e.detail)})
|
211 |
|
212 |
except Exception as e:
|
213 |
-
|
214 |
-
return JSONResponse(status_code=500, content={"detail": "Error inesperado. Intenta más tarde."})
|
215 |
|
216 |
if __name__ == "__main__":
|
217 |
import uvicorn
|
218 |
-
uvicorn.run(app, host="0.0.0.0", port=
|
|
|
2 |
import json
|
3 |
import logging
|
4 |
import boto3
|
5 |
+
from fastapi import FastAPI, HTTPException, Query
|
6 |
from fastapi.responses import JSONResponse
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
import asyncio
|
10 |
|
|
|
11 |
logger = logging.getLogger(__name__)
|
12 |
logger.setLevel(logging.INFO)
|
13 |
console_handler = logging.StreamHandler()
|
|
|
32 |
|
33 |
app = FastAPI()
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
class S3DirectStream:
|
36 |
def __init__(self, bucket_name):
|
37 |
self.s3_client = boto3.client(
|
|
|
61 |
|
62 |
def _get_model_file_parts(self, model_name):
|
63 |
try:
|
64 |
+
model_name = model_name.replace("/", "-").lower()
|
65 |
+
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_name)
|
66 |
+
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_name in obj['Key']]
|
67 |
return model_files
|
68 |
except Exception as e:
|
69 |
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
|
70 |
|
71 |
async def load_model_from_s3(self, model_name):
|
72 |
try:
|
73 |
+
model_name = model_name.replace("/", "-").lower()
|
74 |
+
model_files = await self.get_model_file_parts(model_name)
|
|
|
|
|
75 |
|
76 |
if not model_files:
|
77 |
+
await self.download_and_upload_to_s3(model_name)
|
78 |
|
79 |
+
config_stream = await self.stream_from_s3(f"{model_name}/config.json")
|
80 |
config_data = config_stream.read()
|
81 |
|
82 |
if not config_data:
|
83 |
+
raise HTTPException(status_code=500, detail=f"El archivo de configuración {model_name}/config.json está vacío o no se pudo leer.")
|
84 |
|
85 |
config_text = config_data.decode("utf-8")
|
86 |
config_json = json.loads(config_text)
|
87 |
|
88 |
+
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config_json, from_tf=False)
|
89 |
return model
|
90 |
|
91 |
except HTTPException as e:
|
|
|
95 |
|
96 |
async def load_tokenizer_from_s3(self, model_name):
|
97 |
try:
|
98 |
+
model_name = model_name.replace("/", "-").lower()
|
99 |
+
tokenizer_stream = await self.stream_from_s3(f"{model_name}/tokenizer.json")
|
|
|
100 |
tokenizer_data = tokenizer_stream.read().decode("utf-8")
|
101 |
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
|
103 |
return tokenizer
|
104 |
except Exception as e:
|
105 |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
106 |
|
107 |
async def create_s3_folders(self, s3_key):
|
108 |
try:
|
109 |
+
folder_keys = s3_key.split('-')
|
110 |
for i in range(1, len(folder_keys)):
|
111 |
+
folder_key = '-'.join(folder_keys[:i]) + '/'
|
112 |
if not await self.file_exists_in_s3(folder_key):
|
113 |
logger.info(f"Creando carpeta en S3: {folder_key}")
|
114 |
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')
|
|
|
123 |
except self.s3_client.exceptions.ClientError:
|
124 |
return False
|
125 |
|
126 |
+
async def download_and_upload_to_s3(self, model_name, force_download=False):
|
127 |
try:
|
128 |
+
if force_download:
|
129 |
+
logger.info(f"Forzando la descarga del modelo {model_name} y la carga a S3.")
|
130 |
+
|
131 |
+
model_name = model_name.replace("/", "-").lower()
|
132 |
+
|
133 |
+
if not await self.file_exists_in_s3(f"{model_name}/config.json") or not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
|
134 |
+
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download)
|
135 |
+
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download)
|
136 |
+
|
137 |
+
await self.create_s3_folders(f"{model_name}/")
|
138 |
|
139 |
+
if not await self.file_exists_in_s3(f"{model_name}/config.json"):
|
140 |
+
with open(config_file, "rb") as file:
|
141 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file)
|
142 |
+
|
143 |
+
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
|
144 |
+
with open(tokenizer_file, "rb") as file:
|
145 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)
|
146 |
+
else:
|
147 |
+
logger.info(f"Los archivos del modelo {model_name} ya existen en S3. No es necesario descargarlos de nuevo.")
|
148 |
+
|
149 |
+
except Exception as e:
|
150 |
+
raise HTTPException(status_code=500, detail=f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}")
|
151 |
+
|
152 |
+
async def resume_download(self, model_name):
|
153 |
+
try:
|
154 |
+
logger.info(f"Reanudando la descarga del modelo {model_name} desde Hugging Face.")
|
155 |
+
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True)
|
156 |
+
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True)
|
157 |
+
|
158 |
+
if not await self.file_exists_in_s3(f"{model_name}/config.json"):
|
159 |
with open(config_file, "rb") as file:
|
160 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file)
|
161 |
|
162 |
+
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
|
163 |
with open(tokenizer_file, "rb") as file:
|
164 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)
|
165 |
|
166 |
except Exception as e:
|
167 |
+
raise HTTPException(status_code=500, detail=f"Error al reanudar la descarga o cargar archivos desde Hugging Face a S3: {e}")
|
168 |
|
169 |
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
|
170 |
tokens = tokenizer.encode(text)
|
|
|
177 |
def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS):
|
178 |
generated_text = ""
|
179 |
while len(input_text) > 0:
|
180 |
+
chunks = split_text_by_tokens(input_text, tokenizer, max_tokens)
|
181 |
+
for chunk in chunks:
|
182 |
+
generated_text += model.generate(chunk)
|
|
|
|
|
183 |
return generated_text
|
184 |
|
185 |
+
@app.post("/generate")
|
186 |
+
async def generate_text(model_name: str = Query(...), input_text: str = Query(...)):
|
187 |
try:
|
188 |
+
model_loader = S3DirectStream(S3_BUCKET_NAME)
|
189 |
+
model = await model_loader.load_model_from_s3(model_name)
|
190 |
+
tokenizer = await model_loader.load_tokenizer_from_s3(model_name)
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
+
chunks = split_text_by_tokens(input_text, tokenizer, max_tokens=MAX_TOKENS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
+
generated_text = continue_generation(input_text, model, tokenizer)
|
195 |
+
|
196 |
+
return {"generated_text": generated_text}
|
|
|
|
|
197 |
|
198 |
except Exception as e:
|
199 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
200 |
|
201 |
if __name__ == "__main__":
|
202 |
import uvicorn
|
203 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|