File size: 1,870 Bytes
52cb1af
 
bf44e50
 
 
 
52cb1af
 
 
7a5a1bc
bf44e50
 
52cb1af
 
bf44e50
 
9e35d46
 
eaf234f
c11aa2e
 
 
 
 
bf44e50
 
bbccd1b
eaf234f
 
 
 
bf44e50
 
9e35d46
bf44e50
9e35d46
613c19d
9e35d46
bf44e50
 
 
 
 
769e23e
 
 
bf44e50
 
 
52cb1af
c4500f6
bf44e50
52cb1af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline
import torch
import gradio as gr

# chatgpt-gpt4-prompts-bart-large-cnn-samsum
tokenizer = AutoTokenizer.from_pretrained(
    "Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum")
model = AutoModelForSeq2SeqLM.from_pretrained(
    "Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum", from_tf=True)

# zephyr
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha",
                torch_dtype=torch.bfloat16, device_map="auto")


def generatePrompt(inputuno, inputdos):
    prompt = inputuno
    promptdos = inputdos
    batch = tokenizer(prompt, return_tensors="pt")
    generated_ids = model.generate(batch["input_ids"])
    output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
    new_prompt = output[0]

    messages = [
        {
            "role": "system", "content": str(new_prompt)
        },
        {
            "role": "user", "content": str(promptdos)
        },
    ]
    # https://huggingface.co/docs/transformers/main/en/chat_templating
    # final_prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

    outputs = pipe(messages, tokenize=False, add_generation_prompt=True)
    
    return outputs[0]["generated_text"]
#

# Interface


input_prompt = gr.Textbox(label="Actua como: ", value="Chef")
input_promptdos = gr.Textbox(label="Prompt: ", value="Recipe for ham croquettes")
output_component = gr.Textbox(label="Output: ")
examples = [["photographer"], ["developer"], ["teacher"], [
    "human resources staff"], ["recipe for ham croquettes"]]
description = ""

PerfectGPT = gr.Interface(generatePrompt, inputs=[input_prompt, input_promptdos], outputs=output_component, examples=examples, title="๐Ÿ—ฟ PerfectGPT v1 ๐Ÿ—ฟ", description=description)

PerfectGPT.launch()