Spaces:
Runtime error
Runtime error
File size: 8,125 Bytes
283e8f1 cb013a1 315fa5e 8cdabff cb013a1 283e8f1 315fa5e 283e8f1 315fa5e 283e8f1 315fa5e 283e8f1 cb013a1 13d034e 315fa5e 283e8f1 3a63f58 283e8f1 e85f544 503bed5 cb013a1 e85f544 503bed5 cb013a1 ebd2b6f cb013a1 283e8f1 315fa5e 283e8f1 315fa5e 283e8f1 503bed5 6d21b2d 503bed5 479afcd fc2d9fe 283e8f1 fc2d9fe 283e8f1 cb013a1 283e8f1 cb013a1 283e8f1 315fa5e 283e8f1 e85f544 cb013a1 283e8f1 cb013a1 315fa5e 283e8f1 315fa5e e85f544 cb013a1 503bed5 cb013a1 e85f544 cb013a1 e85f544 cb013a1 315fa5e 8cdabff 283e8f1 315fa5e cb013a1 283e8f1 8cdabff 283e8f1 cb013a1 283e8f1 13d034e 3a63f58 283e8f1 13d034e 315fa5e 13d034e cb013a1 315fa5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gradio as gr
#
from transformers import Wav2Vec2FeatureExtractor
from transformers import AutoModel
import torch
from torch import nn
import torchaudio
import torchaudio.transforms as T
import logging
import json
import os
import re
import os
import random
import pandas as pd
import importlib
modeling_MERT = importlib.import_module("MERT-v1-95M.modeling_MERT")
from Prediction_Head.MTGGenre_head import MLPProberBase
# input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py
logger = logging.getLogger("MERT-v1-95M-app")
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter(
"%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
ch.setFormatter(formatter)
logger.addHandler(ch)
inputs = [
gr.components.Audio(type="filepath", label="Add music audio file"),
]
title = "Isai - toward better music understanding"
description = "This space uses MERT-95M model to peform various music information retrieval tasks."
audio_examples = [
["samples/143.mp3"],
["samples/205.mp3"],
["samples/429.mp3"],
["samples/997.mp3"],
]
df_init = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
transcription_df = gr.DataFrame(value=df_init, label="Model Results", row_count=(
0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate')
# outputs = [gr.components.Textbox()]
df_init_live = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
transcription_df_live = gr.DataFrame(value=df_init_live, label="Model Results", row_count=(
0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate')
outputs_live = transcription_df_live
# Load the model and the corresponding preprocessor config
# model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
# processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
model = modeling_MERT.MERTModel.from_pretrained("./MERT-v1-95M")
processor = Wav2Vec2FeatureExtractor.from_pretrained("./MERT-v1-95M")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
MERT_BEST_LAYER_IDX = {
'EMO': 5,
'GS': 8,
'GTZAN': 7,
'MTGGenre': 7,
'MTGInstrument': 'all',
'MTGMood': 6,
'MTGTop50': 6,
'MTT': 'all',
'NSynthI': 6,
'NSynthP': 1,
'VocalSetS': 2,
'VocalSetT': 9,
}
MERT_BEST_LAYER_IDX = {
'EMO': 5,
'GS': 8,
'GTZAN': 7,
'MTGGenre': 7,
'MTGInstrument': 'all',
'MTGMood': 6,
'MTGTop50': 6,
'MTT': 'all',
'NSynthI': 6,
'NSynthP': 1,
'VocalSetS': 2,
'VocalSetT': 9,
}
CLASSIFIERS = {
}
ID2CLASS = {
}
#TASKS = ['GS', 'MTGInstrument', 'MTGGenre', 'MTGTop50', 'MTGMood', 'NSynthI', 'NSynthP', 'VocalSetS', 'VocalSetT','EMO',]
TASKS = ['GS', 'MTGInstrument', 'MTGGenre', 'MTGMood', 'EMO']
TASK_LABELS = {
'GS': 'Scale',
'MTGInstrument': 'Instruments',
'MTGGenre': 'Genre',
'MTGMood': 'Mood',
'EMO': 'Emotion (Valence/Arousal'
}
Regression_TASKS = ['EMO']
head_dir = './Prediction_Head/best-layer-MERT-v1-95M'
for task in TASKS:
print('loading', task)
with open(os.path.join(head_dir,f'{task}.id2class.json'), 'r') as f:
ID2CLASS[task]=json.load(f)
num_class = len(ID2CLASS[task].keys())
CLASSIFIERS[task] = MLPProberBase(d=768, layer=MERT_BEST_LAYER_IDX[task], num_outputs=num_class)
CLASSIFIERS[task].load_state_dict(torch.load(f'{head_dir}/{task}.ckpt')['state_dict'])
CLASSIFIERS[task].to(device)
model.to(device)
def model_infernce(inputs):
waveform, sample_rate = torchaudio.load(inputs)
resample_rate = processor.sampling_rate
# make sure the sample_rate aligned
if resample_rate != sample_rate:
# print(f'setting rate from {sample_rate} to {resample_rate}')
resampler = T.Resample(sample_rate, resample_rate)
waveform = resampler(waveform)
waveform = waveform.view(-1,) # make it (n_sample, )
model_inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt")
model_inputs.to(device)
with torch.no_grad():
model_outputs = model(**model_inputs, output_hidden_states=True)
# take a look at the output shape, there are 13 layers of representation
# each layer performs differently in different downstream tasks, you should choose empirically
all_layer_hidden_states = torch.stack(model_outputs.hidden_states).squeeze()[1:,:,:].unsqueeze(0)
print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
all_layer_hidden_states = all_layer_hidden_states.mean(dim=2)
task_output_texts = ""
df = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
df_objects = []
for task in TASKS:
num_class = len(ID2CLASS[task].keys())
if MERT_BEST_LAYER_IDX[task] == 'all':
logits = CLASSIFIERS[task](all_layer_hidden_states) # [1, 87]
else:
logits = CLASSIFIERS[task](all_layer_hidden_states[:, MERT_BEST_LAYER_IDX[task]])
# print(f'task {task} logits:', logits.shape, 'num class:', num_class)
sorted_idx = torch.argsort(logits, dim = -1, descending=True)[0] # batch =1
sorted_prob,_ = torch.sort(nn.functional.softmax(logits[0], dim=-1), dim=-1, descending=True)
# print(sorted_prob)
# print(sorted_prob.shape)
top_n_show = 5 if num_class >= 5 else num_class
# task_output_texts = task_output_texts + f"TASK {task} output:\n" + "\n".join([str(ID2CLASS[task][str(sorted_idx[idx].item())])+f', probability: {sorted_prob[idx].item():.2%}' for idx in range(top_n_show)]) + '\n'
# task_output_texts = task_output_texts + '----------------------\n'
row_elements = [TASK_LABELS[task]]
for idx in range(top_n_show):
print(ID2CLASS[task])
# print('id', str(sorted_idx[idx].item()))
output_class_name = str(ID2CLASS[task][str(sorted_idx[idx].item())])
output_class_name = re.sub(r'^\w+---', '', output_class_name)
output_class_name = re.sub(r'^\w+\/\w+---', '', output_class_name)
# print('output name', output_class_name)
output_prob = f' {sorted_prob[idx].item():.2%}'
row_elements.append(output_class_name+output_prob)
# fill empty elment
for _ in range(5+1 - len(row_elements)):
row_elements.append(' ')
df_objects.append(row_elements)
df = pd.DataFrame(df_objects, columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
return df
COLORS = [
["#ff0000", "#00ff00"],
["#00ff00", "#0000ff"],
["#0000ff", "#ff0000"],
]
def convert_audio(audio):
df = model_infernce(audio)
waveform = gr.make_waveform(audio,
bars_color=random.choice(COLORS),
bar_count=80,
bar_width=0.4)
return df, waveform
def audio_waveform(audio):
return gr.make_waveform(audio)
def live_convert_audio(microphone):
if (microphone is not None):
inputs = microphone
df = model_infernce(inputs)
return df
outputs = [transcription_df, gr.Video(label="Waveform")]
audio_chunked = gr.Interface(
fn=convert_audio,
inputs=inputs,
outputs=outputs,
allow_flagging="never",
title=title,
description=description,
# article=article,
examples=audio_examples,
)
# live_audio_chunked = gr.Interface(
# fn=live_convert_audio,
# inputs=live_inputs,
# outputs=outputs_live,
# allow_flagging="never",
# title=title,
# description=description,
# article=article,
# # examples=audio_examples,
# live=True,
# )
# demo = gr.Blocks()
# with demo:
# gr.TabbedInterface(
# [
# audio_chunked,
# live_audio_chunked,
# ],
# [
# "Audio File or Recording",
# "Live Streaming Music"
# ]
# )
# demo.queue(concurrency_count=1, max_size=5)
server_name = os.environ.get('GRADIO_SERVER_NAME', "127.0.0.1")
audio_chunked.launch(server_name=server_name, show_api=False)
|