Spaces:
IvanGonher
/
Runtime error

File size: 8,125 Bytes
283e8f1
 
 
 
 
 
 
 
 
 
 
 
cb013a1
315fa5e
8cdabff
cb013a1
 
283e8f1
315fa5e
283e8f1
 
315fa5e
283e8f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315fa5e
283e8f1
cb013a1
13d034e
 
315fa5e
283e8f1
3a63f58
 
 
 
283e8f1
 
e85f544
503bed5
cb013a1
 
 
e85f544
503bed5
cb013a1
ebd2b6f
cb013a1
283e8f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315fa5e
283e8f1
 
 
 
 
 
 
 
 
 
 
 
 
 
315fa5e
283e8f1
 
 
 
 
 
 
 
503bed5
 
 
 
 
 
 
6d21b2d
503bed5
479afcd
fc2d9fe
283e8f1
 
 
 
 
 
fc2d9fe
283e8f1
 
 
 
cb013a1
283e8f1
 
 
 
 
 
 
cb013a1
283e8f1
 
315fa5e
283e8f1
 
 
 
 
 
 
 
 
 
 
 
 
e85f544
cb013a1
 
283e8f1
 
 
 
 
 
cb013a1
315fa5e
 
283e8f1
 
 
315fa5e
e85f544
 
 
cb013a1
503bed5
cb013a1
 
 
 
 
 
 
 
 
 
e85f544
cb013a1
 
e85f544
cb013a1
315fa5e
8cdabff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283e8f1
 
 
 
315fa5e
cb013a1
283e8f1
8cdabff
 
283e8f1
 
 
cb013a1
283e8f1
 
 
13d034e
3a63f58
283e8f1
 
13d034e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315fa5e
13d034e
 
 
 
 
cb013a1
315fa5e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
#
from transformers import Wav2Vec2FeatureExtractor
from transformers import AutoModel
import torch
from torch import nn
import torchaudio
import torchaudio.transforms as T
import logging

import json
import os
import re
import os
import random

import pandas as pd

import importlib
modeling_MERT = importlib.import_module("MERT-v1-95M.modeling_MERT")

from Prediction_Head.MTGGenre_head import MLPProberBase
# input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py


logger = logging.getLogger("MERT-v1-95M-app")
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter(
    "%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
ch.setFormatter(formatter)
logger.addHandler(ch)



inputs = [
    gr.components.Audio(type="filepath", label="Add music audio file"),
]

title = "Isai - toward better music understanding"
description = "This space uses MERT-95M model to peform various music information retrieval tasks."

audio_examples = [
    ["samples/143.mp3"],
    ["samples/205.mp3"],
    ["samples/429.mp3"],
    ["samples/997.mp3"],
]

df_init = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
transcription_df = gr.DataFrame(value=df_init, label="Model Results", row_count=(
    0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate')
# outputs = [gr.components.Textbox()]

df_init_live = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
transcription_df_live = gr.DataFrame(value=df_init_live, label="Model Results", row_count=(
    0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate')
outputs_live = transcription_df_live

# Load the model and the corresponding preprocessor config
# model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
# processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
model = modeling_MERT.MERTModel.from_pretrained("./MERT-v1-95M")
processor = Wav2Vec2FeatureExtractor.from_pretrained("./MERT-v1-95M")

device = 'cuda' if torch.cuda.is_available() else 'cpu'

MERT_BEST_LAYER_IDX = {
    'EMO': 5,
    'GS': 8,
    'GTZAN': 7,
    'MTGGenre': 7,
    'MTGInstrument': 'all',
    'MTGMood': 6,
    'MTGTop50': 6,
    'MTT': 'all',
    'NSynthI': 6,
    'NSynthP': 1,
    'VocalSetS': 2,
    'VocalSetT': 9,
}

MERT_BEST_LAYER_IDX = {
    'EMO': 5,
    'GS': 8,
    'GTZAN': 7,
    'MTGGenre': 7,
    'MTGInstrument': 'all',
    'MTGMood': 6,
    'MTGTop50': 6,
    'MTT': 'all',
    'NSynthI': 6,
    'NSynthP': 1,
    'VocalSetS': 2,
    'VocalSetT': 9,
}
CLASSIFIERS = {

}

ID2CLASS = {

}

#TASKS = ['GS', 'MTGInstrument', 'MTGGenre', 'MTGTop50', 'MTGMood', 'NSynthI', 'NSynthP', 'VocalSetS', 'VocalSetT','EMO',]
TASKS = ['GS', 'MTGInstrument', 'MTGGenre', 'MTGMood', 'EMO']
TASK_LABELS = {
    'GS': 'Scale',
    'MTGInstrument': 'Instruments',
    'MTGGenre': 'Genre',
    'MTGMood': 'Mood',
    'EMO': 'Emotion (Valence/Arousal'
}
Regression_TASKS = ['EMO']
head_dir = './Prediction_Head/best-layer-MERT-v1-95M'
for task in TASKS:
    print('loading', task)
    with open(os.path.join(head_dir,f'{task}.id2class.json'), 'r') as f:
        ID2CLASS[task]=json.load(f)
    num_class = len(ID2CLASS[task].keys())
    CLASSIFIERS[task] = MLPProberBase(d=768, layer=MERT_BEST_LAYER_IDX[task], num_outputs=num_class)
    CLASSIFIERS[task].load_state_dict(torch.load(f'{head_dir}/{task}.ckpt')['state_dict'])
    CLASSIFIERS[task].to(device)

model.to(device)


def model_infernce(inputs):
    waveform, sample_rate = torchaudio.load(inputs)

    resample_rate = processor.sampling_rate

    # make sure the sample_rate aligned
    if resample_rate != sample_rate:
        # print(f'setting rate from {sample_rate} to {resample_rate}')
        resampler = T.Resample(sample_rate, resample_rate)
        waveform = resampler(waveform)

    waveform = waveform.view(-1,) # make it (n_sample, )
    model_inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt")
    model_inputs.to(device)
    with torch.no_grad():
        model_outputs = model(**model_inputs, output_hidden_states=True)

    # take a look at the output shape, there are 13 layers of representation
    # each layer performs differently in different downstream tasks, you should choose empirically
    all_layer_hidden_states = torch.stack(model_outputs.hidden_states).squeeze()[1:,:,:].unsqueeze(0)
    print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
    all_layer_hidden_states = all_layer_hidden_states.mean(dim=2)

    task_output_texts = ""
    df = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
    df_objects = []

    for task in TASKS:
        num_class = len(ID2CLASS[task].keys())
        if MERT_BEST_LAYER_IDX[task] == 'all':
            logits = CLASSIFIERS[task](all_layer_hidden_states) # [1, 87]
        else:
            logits = CLASSIFIERS[task](all_layer_hidden_states[:, MERT_BEST_LAYER_IDX[task]])
        # print(f'task {task} logits:', logits.shape, 'num class:', num_class)

        sorted_idx = torch.argsort(logits, dim = -1, descending=True)[0] # batch =1
        sorted_prob,_ = torch.sort(nn.functional.softmax(logits[0], dim=-1), dim=-1, descending=True)
        # print(sorted_prob)
        # print(sorted_prob.shape)

        top_n_show = 5 if num_class >= 5 else num_class
        # task_output_texts = task_output_texts + f"TASK {task} output:\n" + "\n".join([str(ID2CLASS[task][str(sorted_idx[idx].item())])+f', probability: {sorted_prob[idx].item():.2%}' for idx in range(top_n_show)]) + '\n'
        # task_output_texts = task_output_texts + '----------------------\n'

        row_elements = [TASK_LABELS[task]]
        for idx in range(top_n_show):
            print(ID2CLASS[task])
            # print('id', str(sorted_idx[idx].item()))
            output_class_name = str(ID2CLASS[task][str(sorted_idx[idx].item())])
            output_class_name = re.sub(r'^\w+---', '', output_class_name)
            output_class_name = re.sub(r'^\w+\/\w+---', '', output_class_name)
            # print('output name', output_class_name)
            output_prob = f' {sorted_prob[idx].item():.2%}'
            row_elements.append(output_class_name+output_prob)
        # fill empty elment
        for _ in range(5+1 - len(row_elements)):
            row_elements.append(' ')
        df_objects.append(row_elements)
    df = pd.DataFrame(df_objects, columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
    return df

COLORS = [
    ["#ff0000", "#00ff00"],
    ["#00ff00", "#0000ff"],
    ["#0000ff", "#ff0000"],
]

def convert_audio(audio):
    df = model_infernce(audio)
    waveform = gr.make_waveform(audio,
        bars_color=random.choice(COLORS),
        bar_count=80,
        bar_width=0.4)
    return df, waveform

def audio_waveform(audio):
    return gr.make_waveform(audio)

def live_convert_audio(microphone):
    if (microphone is not None):
        inputs = microphone
    df = model_infernce(inputs)
    return df

outputs = [transcription_df, gr.Video(label="Waveform")]

audio_chunked = gr.Interface(
    fn=convert_audio,
    inputs=inputs,
    outputs=outputs,
    allow_flagging="never",
    title=title,
    description=description,
    # article=article,
    examples=audio_examples,
)

# live_audio_chunked = gr.Interface(
#     fn=live_convert_audio,
#     inputs=live_inputs,
#     outputs=outputs_live,
#     allow_flagging="never",
#     title=title,
#     description=description,
#     article=article,
#     # examples=audio_examples,
#     live=True,
# )


# demo = gr.Blocks()
# with demo:
#     gr.TabbedInterface(
#         [
#             audio_chunked,
#             live_audio_chunked,
#         ],
#         [
#             "Audio File or Recording",
#             "Live Streaming Music"
#         ]
#     )
# demo.queue(concurrency_count=1, max_size=5)

server_name = os.environ.get('GRADIO_SERVER_NAME', "127.0.0.1")
audio_chunked.launch(server_name=server_name, show_api=False)