JeffYang52415's picture
feat: installation
acfee14 unverified
|
raw
history blame
2.42 kB

LLMDataParser

LLMDataParser is a Python library that provides parsers for benchmark datasets used in evaluating Large Language Models (LLMs). It offers a unified interface for loading and parsing datasets like MMLU, GSM8k, and others, streamlining dataset preparation for LLM evaluation. The library aims to simplify the process of working with common LLM benchmark datasets through a consistent API.

Features

  • Unified Interface: Consistent DatasetParser for all datasets.
  • LLM-Agnostic: Independent of any specific language model.
  • Easy to Use: Simple methods and built-in Python types.
  • Extensible: Easily add support for new datasets.
  • Gradio: Built-in Gradio interface for interactive dataset exploration and testing.

Installation

Option 1: Using pip

You can install the package directly using pip. Even with only a pyproject.toml file, this method works for standard installations.

  1. Clone the Repository:

    git clone https://github.com/jeff52415/LLMDataParser.git
    cd LLMDataParser
    
  2. Install Dependencies with pip:

    pip install .
    

Option 2: Using Poetry

Poetry manages the virtual environment and dependencies automatically, so you don't need to create a conda environment first.

  1. Install Dependencies with Poetry:

    poetry install
    
  2. Activate the Virtual Environment:

    poetry shell
    

Available Parsers

  • MMLUDatasetParser
  • MMLUProDatasetParser
  • MMLUReduxDatasetParser
  • TMMLUPlusDatasetParser
  • GSM8KDatasetParser
  • MATHDatasetParser
  • MGSMDatasetParser
  • HumanEvalDatasetParser
  • HumanEvalDatasetPlusParser
  • BBHDatasetParser
  • MBPPDatasetParser
  • IFEvalDatasetParser
  • TWLegalDatasetParser
  • TMLUDatasetParser

Adding New Dataset Parsers

To add support for a new dataset, please refer to our detailed guide in docs/adding_new_parser.md. The guide includes:

  • Step-by-step instructions for creating a new parser
  • Code examples and templates
  • Best practices and common patterns
  • Testing guidelines

License

This project is licensed under the MIT License. See the LICENSE file for details.

Contact

For questions or support, please open an issue on GitHub or contact [email protected].