Jensen Holm commited on
Commit
d7ea050
·
1 Parent(s): ff1254a

loss functions now just have staticmethods

Browse files
numpyneuron/__init__.py CHANGED
@@ -8,3 +8,9 @@ ACTIVATIONS: dict[str, Activation] = {
8
  "TanH": TanH(),
9
  "SoftMax": SoftMax(),
10
  }
 
 
 
 
 
 
 
8
  "TanH": TanH(),
9
  "SoftMax": SoftMax(),
10
  }
11
+
12
+ LOSSES: dict[str, Loss] = {
13
+ "MSE": MSE(),
14
+ "CrossEntropy": CrossEntropy(),
15
+ "CrossEntropyWithLogitsLoss": CrossEntropyWithLogits(),
16
+ }
numpyneuron/activation.py CHANGED
@@ -4,11 +4,11 @@ from abc import abstractmethod, ABC
4
 
5
  class Activation(ABC):
6
  @abstractmethod
7
- def forward(self, X: np.ndarray) -> np.ndarray:
8
  pass
9
 
10
  @abstractmethod
11
- def backward(self, X: np.ndarray) -> np.ndarray:
12
  pass
13
 
14
 
 
4
 
5
  class Activation(ABC):
6
  @abstractmethod
7
+ def forward(X: np.ndarray) -> np.ndarray:
8
  pass
9
 
10
  @abstractmethod
11
+ def backward(X: np.ndarray) -> np.ndarray:
12
  pass
13
 
14
 
numpyneuron/loss.py CHANGED
@@ -4,12 +4,14 @@ import numpy as np
4
 
5
 
6
  class Loss(ABC):
 
7
  @abstractmethod
8
- def forward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
9
  pass
10
 
 
11
  @abstractmethod
12
- def backward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
13
  pass
14
 
15
 
@@ -18,19 +20,22 @@ class LogitsLoss(Loss):
18
 
19
 
20
  class MSE(Loss):
21
- def forward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
 
22
  return np.sum(np.square(y_hat - y_true)) / y_true.shape[0]
23
 
24
- def backward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
 
25
  return (y_hat - y_true) * (2 / y_true.shape[0])
26
 
27
 
28
  class CrossEntropy(Loss):
29
- def forward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
 
30
  y_hat = np.asarray(y_hat)
31
  y_true = np.asarray(y_true)
32
  m = y_true.shape[0]
33
- p = self._softmax(y_hat)
34
  eps = 1e-15 # to prevent log(0)
35
  log_likelihood = -np.log(
36
  np.clip(p[range(m), y_true.argmax(axis=1)], a_min=eps, a_max=None)
@@ -38,19 +43,17 @@ class CrossEntropy(Loss):
38
  loss = np.sum(log_likelihood) / m
39
  return loss
40
 
41
- def backward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
 
42
  y_hat = np.asarray(y_hat)
43
  y_true = np.asarray(y_true)
44
  grad = y_hat - y_true
45
  return grad / y_true.shape[0]
46
 
47
- @staticmethod
48
- def _softmax(X: np.ndarray) -> np.ndarray:
49
- return SoftMax().forward(X)
50
-
51
 
52
  class CrossEntropyWithLogits(LogitsLoss):
53
- def forward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
 
54
  # Apply the log-sum-exp trick for numerical stability
55
  max_logits = np.max(y_hat, axis=1, keepdims=True)
56
  log_sum_exp = np.log(np.sum(np.exp(y_hat - max_logits), axis=1, keepdims=True))
@@ -59,17 +62,11 @@ class CrossEntropyWithLogits(LogitsLoss):
59
  loss = -np.sum(log_probs * y_true) / y_true.shape[0]
60
  return loss
61
 
62
- def backward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
 
63
  # Compute softmax probabilities
64
  exps = np.exp(y_hat - np.max(y_hat, axis=1, keepdims=True))
65
  probs = exps / np.sum(exps, axis=1, keepdims=True)
66
  # Subtract the one-hot encoded labels from the probabilities
67
  grad = (probs - y_true) / y_true.shape[0]
68
  return grad
69
-
70
-
71
- LOSSES: dict[str, Loss] = {
72
- "MSE": MSE(),
73
- "CrossEntropy": CrossEntropy(),
74
- "CrossEntropyWithLogitsLoss": CrossEntropyWithLogits(),
75
- }
 
4
 
5
 
6
  class Loss(ABC):
7
+ @staticmethod
8
  @abstractmethod
9
+ def forward(y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
10
  pass
11
 
12
+ @staticmethod
13
  @abstractmethod
14
+ def backward(y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
15
  pass
16
 
17
 
 
20
 
21
 
22
  class MSE(Loss):
23
+ @staticmethod
24
+ def forward(y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
25
  return np.sum(np.square(y_hat - y_true)) / y_true.shape[0]
26
 
27
+ @staticmethod
28
+ def backward(y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
29
  return (y_hat - y_true) * (2 / y_true.shape[0])
30
 
31
 
32
  class CrossEntropy(Loss):
33
+ @staticmethod
34
+ def forward(y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
35
  y_hat = np.asarray(y_hat)
36
  y_true = np.asarray(y_true)
37
  m = y_true.shape[0]
38
+ p = SoftMax().forward(y_hat)
39
  eps = 1e-15 # to prevent log(0)
40
  log_likelihood = -np.log(
41
  np.clip(p[range(m), y_true.argmax(axis=1)], a_min=eps, a_max=None)
 
43
  loss = np.sum(log_likelihood) / m
44
  return loss
45
 
46
+ @staticmethod
47
+ def backward(y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
48
  y_hat = np.asarray(y_hat)
49
  y_true = np.asarray(y_true)
50
  grad = y_hat - y_true
51
  return grad / y_true.shape[0]
52
 
 
 
 
 
53
 
54
  class CrossEntropyWithLogits(LogitsLoss):
55
+ @staticmethod
56
+ def forward(y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
57
  # Apply the log-sum-exp trick for numerical stability
58
  max_logits = np.max(y_hat, axis=1, keepdims=True)
59
  log_sum_exp = np.log(np.sum(np.exp(y_hat - max_logits), axis=1, keepdims=True))
 
62
  loss = -np.sum(log_probs * y_true) / y_true.shape[0]
63
  return loss
64
 
65
+ @staticmethod
66
+ def backward(y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray:
67
  # Compute softmax probabilities
68
  exps = np.exp(y_hat - np.max(y_hat, axis=1, keepdims=True))
69
  probs = exps / np.sum(exps, axis=1, keepdims=True)
70
  # Subtract the one-hot encoded labels from the probabilities
71
  grad = (probs - y_true) / y_true.shape[0]
72
  return grad
 
 
 
 
 
 
 
test/{test_activation.py → test_activation_fns.py} RENAMED
File without changes
test/test_loss_fns.py ADDED
File without changes