Spaces:
Runtime error
Runtime error
# Copyright (c) 2023-2024, Zexin He | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from PIL import Image | |
import numpy as np | |
import gradio as gr | |
def assert_input_image(input_image): | |
if input_image is None: | |
raise gr.Error("No image selected or uploaded!") | |
def prepare_working_dir(): | |
import tempfile | |
working_dir = tempfile.TemporaryDirectory() | |
return working_dir | |
def init_preprocessor(): | |
from openlrm.utils.preprocess import Preprocessor | |
global preprocessor | |
preprocessor = Preprocessor() | |
def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir): | |
image_raw = os.path.join(working_dir.name, "raw.png") | |
with Image.fromarray(image_in) as img: | |
img.save(image_raw) | |
image_out = os.path.join(working_dir.name, "rembg.png") | |
success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter) | |
assert success, f"Failed under preprocess_fn!" | |
return image_out | |
def demo_openlrm(infer_impl): | |
def core_fn(image: str, source_cam_dist: float, working_dir): | |
dump_video_path = os.path.join(working_dir.name, "output.mp4") | |
dump_mesh_path = os.path.join(working_dir.name, "output.ply") | |
infer_impl( | |
image_path=image, | |
source_cam_dist=source_cam_dist, | |
export_video=True, | |
export_mesh=False, | |
dump_video_path=dump_video_path, | |
dump_mesh_path=dump_mesh_path, | |
) | |
return dump_video_path | |
def example_fn(image: np.ndarray): | |
from gradio.utils import get_cache_folder | |
working_dir = get_cache_folder() | |
image = preprocess_fn( | |
image_in=image, | |
remove_bg=True, | |
recenter=True, | |
working_dir=working_dir, | |
) | |
video = core_fn( | |
image=image, | |
source_cam_dist=2.0, | |
working_dir=working_dir, | |
) | |
return image, video | |
_TITLE = '''OpenLRM: Open-Source Large Reconstruction Models''' | |
_DESCRIPTION = ''' | |
<div> | |
<a style="display:inline-block" href='https://github.com/3DTopia/OpenLRM'><img src='https://img.shields.io/github/stars/3DTopia/OpenLRM?style=social'/></a> | |
<a style="display:inline-block; margin-left: .5em" href="https://huggingface.co/zxhezexin"><img src='https://img.shields.io/badge/Model-Weights-blue'/></a> | |
</div> | |
OpenLRM is an open-source implementation of Large Reconstruction Models. | |
<strong>Image-to-3D in 10 seconds with A100!</strong> | |
<strong>Disclaimer:</strong> This demo uses `openlrm-mix-base-1.1` model with 288x288 rendering resolution here for a quick demonstration. | |
''' | |
with gr.Blocks(analytics_enabled=False) as demo: | |
# HEADERS | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
with gr.Row(): | |
gr.Markdown(_DESCRIPTION) | |
# DISPLAY | |
with gr.Row(): | |
with gr.Column(variant='panel', scale=1): | |
with gr.Tabs(elem_id="openlrm_input_image"): | |
with gr.TabItem('Input Image'): | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", image_mode="RGBA", width="auto", sources="upload", type="numpy", elem_id="content_image") | |
with gr.Column(variant='panel', scale=1): | |
with gr.Tabs(elem_id="openlrm_processed_image"): | |
with gr.TabItem('Processed Image'): | |
with gr.Row(): | |
processed_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", width="auto", interactive=False) | |
with gr.Column(variant='panel', scale=1): | |
with gr.Tabs(elem_id="openlrm_render_video"): | |
with gr.TabItem('Rendered Video'): | |
with gr.Row(): | |
output_video = gr.Video(label="Rendered Video", format="mp4", width="auto", autoplay=True) | |
# SETTING | |
with gr.Row(): | |
with gr.Column(variant='panel', scale=1): | |
with gr.Tabs(elem_id="openlrm_attrs"): | |
with gr.TabItem('Settings'): | |
with gr.Column(variant='panel'): | |
gr.Markdown( | |
""" | |
<strong>Best Practice</strong>: | |
Centered objects in reasonable sizes. Try adjusting source camera distances. | |
""" | |
) | |
checkbox_rembg = gr.Checkbox(True, label='Remove background') | |
checkbox_recenter = gr.Checkbox(True, label='Recenter the object') | |
slider_cam_dist = gr.Slider(1.0, 3.5, value=2.0, step=0.1, label="Source Camera Distance") | |
submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary') | |
# EXAMPLES | |
with gr.Row(): | |
examples = [ | |
['assets/sample_input/owl.png'], | |
['assets/sample_input/building.png'], | |
['assets/sample_input/mailbox.png'], | |
['assets/sample_input/fire.png'], | |
['assets/sample_input/girl.png'], | |
['assets/sample_input/lamp.png'], | |
['assets/sample_input/hydrant.png'], | |
['assets/sample_input/hotdogs.png'], | |
['assets/sample_input/traffic.png'], | |
['assets/sample_input/ceramic.png'], | |
] | |
gr.Examples( | |
examples=examples, | |
inputs=[input_image], | |
outputs=[processed_image, output_video], | |
fn=example_fn, | |
cache_examples=bool(os.getenv('SPACE_ID')), | |
examples_per_page=20, | |
) | |
working_dir = gr.State() | |
submit.click( | |
fn=assert_input_image, | |
inputs=[input_image], | |
queue=False, | |
).success( | |
fn=prepare_working_dir, | |
outputs=[working_dir], | |
queue=False, | |
).success( | |
fn=preprocess_fn, | |
inputs=[input_image, checkbox_rembg, checkbox_recenter, working_dir], | |
outputs=[processed_image], | |
).success( | |
fn=core_fn, | |
inputs=[processed_image, slider_cam_dist, working_dir], | |
outputs=[output_video], | |
) | |
demo.queue() | |
demo.launch() | |
def launch_gradio_app(): | |
os.environ.update({ | |
"APP_ENABLED": "1", | |
"APP_MODEL_NAME": "zxhezexin/openlrm-mix-base-1.1", | |
"APP_INFER": "./configs/infer-gradio.yaml", | |
"APP_TYPE": "infer.lrm", | |
"NUMBA_THREADING_LAYER": 'omp', | |
}) | |
from openlrm.runners import REGISTRY_RUNNERS | |
from openlrm.runners.infer.base_inferrer import Inferrer | |
InferrerClass : Inferrer = REGISTRY_RUNNERS[os.getenv("APP_TYPE")] | |
with InferrerClass() as inferrer: | |
init_preprocessor() | |
if not bool(os.getenv('SPACE_ID')): | |
from openlrm.utils.proxy import no_proxy | |
demo = no_proxy(demo_openlrm) | |
else: | |
demo = demo_openlrm | |
demo(infer_impl=inferrer.infer_single) | |
if __name__ == '__main__': | |
launch_gradio_app() | |