Spaces:
Running
on
Zero
Running
on
Zero
File size: 95,635 Bytes
0c57d8c 821a6d5 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c a3da8d7 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 4f61aea 0c57d8c 8b5139d 0c57d8c 8b5139d 0c57d8c f393118 8b5139d 0c57d8c 9f2f8c6 0c57d8c 8b5139d 0c57d8c 8b5139d 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 8b5139d 0c57d8c 8b5139d 0c57d8c 9f2f8c6 0c57d8c 821a6d5 9365383 9bd99fd 9f2f8c6 821a6d5 0c57d8c 3c5e6ea 0c57d8c 3c5e6ea 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c ed6cc2f 3c5e6ea 0c57d8c 3c5e6ea 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 84b98e0 0c57d8c 1e68e94 0c57d8c 7a3899b 0c57d8c a3da8d7 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 a3da8d7 0c57d8c aae38b0 9f2f8c6 aae38b0 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c a3da8d7 1e68e94 0c57d8c 8b5139d 7a3899b 0c57d8c 7a3899b 84b98e0 0c57d8c a3da8d7 0c57d8c 9f2f8c6 65fa164 3c5e6ea ffc6c73 a3da8d7 ffc6c73 65fa164 0c57d8c 9f2f8c6 0c57d8c 9365383 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 9f2f8c6 0c57d8c 8b5139d 0c57d8c 1e68e94 a6653e4 7a3899b 9365383 a3da8d7 9365383 7a3899b 9365383 a3da8d7 7a3899b a3da8d7 7a3899b a3da8d7 9365383 a3da8d7 9365383 4f61aea a3da8d7 4f61aea 9365383 7a3899b 0c57d8c 9f2f8c6 a3da8d7 9f2f8c6 a3da8d7 9f2f8c6 a3da8d7 9f2f8c6 a3da8d7 9f2f8c6 a3da8d7 9f2f8c6 a3da8d7 9f2f8c6 a3da8d7 0c57d8c 821a6d5 0c57d8c 58b212d 0c57d8c aae38b0 0c57d8c aae38b0 9f2f8c6 aae38b0 6579b0f aae38b0 821a6d5 aae38b0 821a6d5 aae38b0 51f2f9a 9bd99fd 6579b0f aae38b0 0c57d8c aae38b0 0c57d8c aae38b0 0c57d8c aae38b0 0c57d8c aae38b0 0c57d8c a3da8d7 aae38b0 821a6d5 aae38b0 821a6d5 4f61aea 8b5139d aae38b0 821a6d5 aae38b0 4f61aea aae38b0 821a6d5 aae38b0 821a6d5 aae38b0 4f61aea aae38b0 4f61aea aae38b0 4f61aea aae38b0 4f61aea aae38b0 4f61aea aae38b0 4f61aea aae38b0 4f61aea aae38b0 4f61aea aae38b0 4f61aea aae38b0 4f61aea aae38b0 4f61aea aae38b0 a3da8d7 aae38b0 a3da8d7 aae38b0 4f61aea aae38b0 4f61aea aae38b0 9f2f8c6 aae38b0 6960acd aae38b0 821a6d5 aae38b0 821a6d5 aae38b0 6960acd aae38b0 821a6d5 aae38b0 821a6d5 aae38b0 9f2f8c6 821a6d5 aae38b0 821a6d5 aae38b0 4f61aea aae38b0 9f2f8c6 aae38b0 821a6d5 aae38b0 821a6d5 aae38b0 f98e90f aae38b0 f98e90f e14f4dc f98e90f aae38b0 6960acd aae38b0 0c57d8c aae38b0 0c57d8c aae38b0 a3da8d7 aae38b0 691c505 aae38b0 9f2f8c6 aae38b0 4f61aea aae38b0 0c57d8c ed51a72 f98e90f 08868a5 ed51a72 08868a5 9bd99fd 0c57d8c 84b98e0 08868a5 84b98e0 0c57d8c 84b98e0 08868a5 84b98e0 0c57d8c 08868a5 0c57d8c f98e90f ffc6c73 84b98e0 f98e90f ffc6c73 84b98e0 ffc6c73 f98e90f ffc6c73 98f6657 a3da8d7 98f6657 a3da8d7 c23ec23 3c5e6ea ed6cc2f ed51a72 08868a5 ed6cc2f f98e90f 0c57d8c 107eac2 0c57d8c c23ec23 f98e90f a40d937 08868a5 a40d937 08868a5 a40d937 08868a5 a40d937 08868a5 0c57d8c 08868a5 0c57d8c 6579b0f 0c57d8c 08868a5 0c57d8c 691c505 0c57d8c a3da8d7 0c57d8c 8b5139d a3da8d7 0c57d8c 84b98e0 0c57d8c 84b98e0 821a6d5 0c57d8c 6579b0f 0c57d8c 6579b0f 0c57d8c 6579b0f ed6cc2f 0c57d8c 107eac2 0c57d8c 08868a5 0c57d8c 107eac2 0c57d8c c23ec23 a40d937 08868a5 a40d937 08868a5 a40d937 08868a5 6579b0f f98e90f 6579b0f ed51a72 0c57d8c 6579b0f a40d937 08868a5 a40d937 08868a5 a40d937 08868a5 6579b0f 0c57d8c 6579b0f 0c57d8c d321de7 7a3899b 0c57d8c 4f61aea 0c57d8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 |
import spaces
import gradio as gr
import os
from stablepy import Model_Diffusers
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
from stablepy.diffusers_vanilla.constants import FLUX_CN_UNION_MODES
import torch
import re
from huggingface_hub import HfApi
from stablepy import (
CONTROLNET_MODEL_IDS,
VALID_TASKS,
T2I_PREPROCESSOR_NAME,
FLASH_LORA,
SCHEDULER_CONFIG_MAP,
scheduler_names,
IP_ADAPTER_MODELS,
IP_ADAPTERS_SD,
IP_ADAPTERS_SDXL,
REPO_IMAGE_ENCODER,
ALL_PROMPT_WEIGHT_OPTIONS,
SD15_TASKS,
SDXL_TASKS,
)
import time
#import urllib.parse
PREPROCESSOR_CONTROLNET = {
"openpose": [
"Openpose",
"None",
],
"scribble": [
"HED",
"Pidinet",
"None",
],
"softedge": [
"Pidinet",
"HED",
"HED safe",
"Pidinet safe",
"None",
],
"segmentation": [
"UPerNet",
"None",
],
"depth": [
"DPT",
"Midas",
"None",
],
"normalbae": [
"NormalBae",
"None",
],
"lineart": [
"Lineart",
"Lineart coarse",
"Lineart (anime)",
"None",
"None (anime)",
],
"lineart_anime": [
"Lineart",
"Lineart coarse",
"Lineart (anime)",
"None",
"None (anime)",
],
"shuffle": [
"ContentShuffle",
"None",
],
"canny": [
"Canny",
"None",
],
"mlsd": [
"MLSD",
"None",
],
"ip2p": [
"ip2p"
],
"recolor": [
"Recolor luminance",
"Recolor intensity",
"None",
],
"tile": [
"Mild Blur",
"Moderate Blur",
"Heavy Blur",
"None",
],
}
TASK_STABLEPY = {
'txt2img': 'txt2img',
'img2img': 'img2img',
'inpaint': 'inpaint',
# 'canny T2I Adapter': 'sdxl_canny_t2i', # NO HAVE STEP CALLBACK PARAMETERS SO NOT WORKS WITH DIFFUSERS 0.29.0
# 'sketch T2I Adapter': 'sdxl_sketch_t2i',
# 'lineart T2I Adapter': 'sdxl_lineart_t2i',
# 'depth-midas T2I Adapter': 'sdxl_depth-midas_t2i',
# 'openpose T2I Adapter': 'sdxl_openpose_t2i',
'openpose ControlNet': 'openpose',
'canny ControlNet': 'canny',
'mlsd ControlNet': 'mlsd',
'scribble ControlNet': 'scribble',
'softedge ControlNet': 'softedge',
'segmentation ControlNet': 'segmentation',
'depth ControlNet': 'depth',
'normalbae ControlNet': 'normalbae',
'lineart ControlNet': 'lineart',
'lineart_anime ControlNet': 'lineart_anime',
'shuffle ControlNet': 'shuffle',
'ip2p ControlNet': 'ip2p',
'optical pattern ControlNet': 'pattern',
'recolor ControlNet': 'recolor',
'tile ControlNet': 'tile',
}
TASK_MODEL_LIST = list(TASK_STABLEPY.keys())
UPSCALER_DICT_GUI = {
None: None,
"Lanczos": "Lanczos",
"Nearest": "Nearest",
'Latent': 'Latent',
'Latent (antialiased)': 'Latent (antialiased)',
'Latent (bicubic)': 'Latent (bicubic)',
'Latent (bicubic antialiased)': 'Latent (bicubic antialiased)',
'Latent (nearest)': 'Latent (nearest)',
'Latent (nearest-exact)': 'Latent (nearest-exact)',
"RealESRGAN_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
"RealESRNet_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
"RealESRGAN_x4plus_anime_6B": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
"RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
"realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
"realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
"realesr-general-wdn-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
"4x-UltraSharp": "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
"4x_foolhardy_Remacri": "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
"Remacri4xExtraSmoother": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
"AnimeSharp4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
"lollypop": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth",
"RealisticRescaler4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth",
"NickelbackFS4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth"
}
UPSCALER_KEYS = list(UPSCALER_DICT_GUI.keys())
def download_things(directory, url, hf_token="", civitai_api_key=""):
url = url.strip()
if "drive.google.com" in url:
original_dir = os.getcwd()
os.chdir(directory)
os.system(f"gdown --fuzzy {url}")
os.chdir(original_dir)
elif "huggingface.co" in url:
url = url.replace("?download=true", "")
# url = urllib.parse.quote(url, safe=':/') # fix encoding
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/")
user_header = f'"Authorization: Bearer {hf_token}"'
if hf_token:
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
else:
os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
elif "civitai.com" in url:
if "?" in url:
url = url.split("?")[0]
if civitai_api_key:
url = url + f"?token={civitai_api_key}"
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
else:
print("\033[91mYou need an API key to download Civitai models.\033[0m")
else:
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
def get_model_list(directory_path):
model_list = []
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
for filename in os.listdir(directory_path):
if os.path.splitext(filename)[1] in valid_extensions:
# name_without_extension = os.path.splitext(filename)[0]
file_path = os.path.join(directory_path, filename)
# model_list.append((name_without_extension, file_path))
model_list.append(file_path)
print('\033[34mFILE: ' + file_path + '\033[0m')
return model_list
## BEGIN MOD
from modutils import (list_uniq, download_private_repo, get_model_id_list, get_tupled_embed_list,
get_lora_model_list, get_all_lora_tupled_list, update_loras, apply_lora_prompt, set_prompt_loras,
get_my_lora, upload_file_lora, move_file_lora, search_civitai_lora, select_civitai_lora,
set_textual_inversion_prompt, get_model_pipeline, change_interface_mode, get_t2i_model_info,
get_tupled_model_list, save_gallery_images, set_optimization, set_sampler_settings,
set_quick_presets, process_style_prompt, optimization_list, save_images,
preset_styles, preset_quality, preset_sampler_setting, translate_to_en)
from env import (HF_TOKEN, CIVITAI_API_KEY, HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
directory_models, directory_loras, directory_vaes, directory_embeds, directory_embeds_sdxl,
directory_embeds_positive_sdxl, load_diffusers_format_model,
download_model_list, download_lora_list, download_vae_list, download_embeds)
# - **Download Models**
download_model = ", ".join(download_model_list)
# - **Download VAEs**
download_vae = ", ".join(download_vae_list)
# - **Download LoRAs**
download_lora = ", ".join(download_lora_list)
download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO, directory_loras, True)
download_private_repo(HF_VAE_PRIVATE_REPO, directory_vaes, False)
load_diffusers_format_model = list_uniq(get_model_id_list() + load_diffusers_format_model)
## END MOD
# Download stuffs
for url in [url.strip() for url in download_model.split(',')]:
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
download_things(directory_models, url, HF_TOKEN, CIVITAI_API_KEY)
for url in [url.strip() for url in download_vae.split(',')]:
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
download_things(directory_vaes, url, HF_TOKEN, CIVITAI_API_KEY)
for url in [url.strip() for url in download_lora.split(',')]:
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
# Download Embeddings
for url_embed in download_embeds:
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
download_things(directory_embeds, url_embed, HF_TOKEN, CIVITAI_API_KEY)
# Build list models
embed_list = get_model_list(directory_embeds)
model_list = get_model_list(directory_models)
model_list = load_diffusers_format_model + model_list
## BEGIN MOD
lora_model_list = get_lora_model_list()
vae_model_list = get_model_list(directory_vaes)
vae_model_list.insert(0, "None")
download_private_repo(HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, directory_embeds_sdxl, False)
download_private_repo(HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO, directory_embeds_positive_sdxl, False)
embed_sdxl_list = get_model_list(directory_embeds_sdxl) + get_model_list(directory_embeds_positive_sdxl)
def get_embed_list(pipeline_name):
return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
## END MOD
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
#######################
# GUI
#######################
import gradio as gr
import logging
logging.getLogger("diffusers").setLevel(logging.ERROR)
import diffusers
diffusers.utils.logging.set_verbosity(40)
import warnings
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
## BEGIN MOD
from stablepy import logger
logger.setLevel(logging.CRITICAL)
from v2 import V2_ALL_MODELS, v2_random_prompt, v2_upsampling_prompt
from utils import (gradio_copy_text, COPY_ACTION_JS, gradio_copy_prompt,
V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
from tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt,
remove_specific_prompt, insert_recom_prompt, insert_model_recom_prompt,
compose_prompt_to_copy, translate_prompt, select_random_character)
def description_ui():
gr.Markdown(
"""
## Danbooru Tags Transformer V2 Demo with WD Tagger
(Image =>) Prompt => Upsampled longer prompt
- Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with 🤗 transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers).
- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft)
"""
)
## END MOD
msg_inc_vae = (
"Use the right VAE for your model to maintain image quality. The wrong"
" VAE can lead to poor results, like blurriness in the generated images."
)
SDXL_TASK = [k for k, v in TASK_STABLEPY.items() if v in SDXL_TASKS]
SD_TASK = [k for k, v in TASK_STABLEPY.items() if v in SD15_TASKS]
FLUX_TASK = list(TASK_STABLEPY.keys())[:3] + [k for k, v in TASK_STABLEPY.items() if v in FLUX_CN_UNION_MODES.keys()]
MODEL_TYPE_TASK = {
"SD 1.5": SD_TASK,
"SDXL": SDXL_TASK,
"FLUX": FLUX_TASK,
}
MODEL_TYPE_CLASS = {
"diffusers:StableDiffusionPipeline": "SD 1.5",
"diffusers:StableDiffusionXLPipeline": "SDXL",
"diffusers:FluxPipeline": "FLUX",
}
POST_PROCESSING_SAMPLER = ["Use same sampler"] + scheduler_names[:-2]
SUBTITLE_GUI = (
"### This demo uses [diffusers](https://github.com/huggingface/diffusers)"
" to perform different tasks in image generation."
)
def extract_parameters(input_string):
parameters = {}
input_string = input_string.replace("\n", "")
if "Negative prompt:" not in input_string:
print("Negative prompt not detected")
parameters["prompt"] = input_string
return parameters
parm = input_string.split("Negative prompt:")
parameters["prompt"] = parm[0]
if "Steps:" not in parm[1]:
print("Steps not detected")
parameters["neg_prompt"] = parm[1]
return parameters
parm = parm[1].split("Steps:")
parameters["neg_prompt"] = parm[0]
input_string = "Steps:" + parm[1]
# Extracting Steps
steps_match = re.search(r'Steps: (\d+)', input_string)
if steps_match:
parameters['Steps'] = int(steps_match.group(1))
# Extracting Size
size_match = re.search(r'Size: (\d+x\d+)', input_string)
if size_match:
parameters['Size'] = size_match.group(1)
width, height = map(int, parameters['Size'].split('x'))
parameters['width'] = width
parameters['height'] = height
# Extracting other parameters
other_parameters = re.findall(r'(\w+): (.*?)(?=, \w+|$)', input_string)
for param in other_parameters:
parameters[param[0]] = param[1].strip('"')
return parameters
def info_html(json_data, title, subtitle):
return f"""
<div style='padding: 0; border-radius: 10px;'>
<p style='margin: 0; font-weight: bold;'>{title}</p>
<details>
<summary>Details</summary>
<p style='margin: 0; font-weight: bold;'>{subtitle}</p>
</details>
</div>
"""
def get_model_type(repo_id: str):
api = HfApi(token=os.environ.get("HF_TOKEN")) # if use private or gated model
default = "SD 1.5"
try:
model = api.model_info(repo_id=repo_id, timeout=5.0)
tags = model.tags
for tag in tags:
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
except Exception:
return default
return default
class GuiSD:
def __init__(self):
self.model = None
print("Loading model...")
self.model = Model_Diffusers(
base_model_id="Lykon/dreamshaper-8",
task_name="txt2img",
vae_model=None,
type_model_precision=torch.float16,
retain_task_model_in_cache=False,
device="cpu",
)
self.model.device = torch.device("cpu") #
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
yield f"Loading model: {model_name}"
vae_model = vae_model if vae_model != "None" else None
model_type = get_model_type(model_name)
if vae_model:
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
if model_type != vae_type:
gr.Warning(msg_inc_vae)
self.model.device = torch.device("cpu")
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
self.model.load_pipe(
model_name,
task_name=TASK_STABLEPY[task],
vae_model=vae_model if vae_model != "None" else None,
type_model_precision=dtype_model,
retain_task_model_in_cache=False,
)
yield f"Model loaded: {model_name}"
#@spaces.GPU
@torch.inference_mode()
def generate_pipeline(
self,
prompt,
neg_prompt,
num_images,
steps,
cfg,
clip_skip,
seed,
lora1,
lora_scale1,
lora2,
lora_scale2,
lora3,
lora_scale3,
lora4,
lora_scale4,
lora5,
lora_scale5,
sampler,
img_height,
img_width,
model_name,
vae_model,
task,
image_control,
preprocessor_name,
preprocess_resolution,
image_resolution,
style_prompt, # list []
style_json_file,
image_mask,
strength,
low_threshold,
high_threshold,
value_threshold,
distance_threshold,
controlnet_output_scaling_in_unet,
controlnet_start_threshold,
controlnet_stop_threshold,
textual_inversion,
syntax_weights,
upscaler_model_path,
upscaler_increases_size,
esrgan_tile,
esrgan_tile_overlap,
hires_steps,
hires_denoising_strength,
hires_sampler,
hires_prompt,
hires_negative_prompt,
hires_before_adetailer,
hires_after_adetailer,
loop_generation,
leave_progress_bar,
disable_progress_bar,
image_previews,
display_images,
save_generated_images,
image_storage_location,
retain_compel_previous_load,
retain_detailfix_model_previous_load,
retain_hires_model_previous_load,
t2i_adapter_preprocessor,
t2i_adapter_conditioning_scale,
t2i_adapter_conditioning_factor,
xformers_memory_efficient_attention,
freeu,
generator_in_cpu,
adetailer_inpaint_only,
adetailer_verbose,
adetailer_sampler,
adetailer_active_a,
prompt_ad_a,
negative_prompt_ad_a,
strength_ad_a,
face_detector_ad_a,
person_detector_ad_a,
hand_detector_ad_a,
mask_dilation_a,
mask_blur_a,
mask_padding_a,
adetailer_active_b,
prompt_ad_b,
negative_prompt_ad_b,
strength_ad_b,
face_detector_ad_b,
person_detector_ad_b,
hand_detector_ad_b,
mask_dilation_b,
mask_blur_b,
mask_padding_b,
retain_task_cache_gui,
image_ip1,
mask_ip1,
model_ip1,
mode_ip1,
scale_ip1,
image_ip2,
mask_ip2,
model_ip2,
mode_ip2,
scale_ip2,
pag_scale,
#progress=gr.Progress(track_tqdm=True),
):
#progress(0, desc="Preparing inference...")
vae_model = vae_model if vae_model != "None" else None
loras_list = [lora1, lora2, lora3, lora4, lora5]
vae_msg = f"VAE: {vae_model}" if vae_model else ""
msg_lora = ""
print("Config model:", model_name, vae_model, loras_list)
## BEGIN MOD
global lora_model_list
lora_model_list = get_lora_model_list()
lora1, lora_scale1, lora2, lora_scale2, lora3, lora_scale3, lora4, lora_scale4, lora5, lora_scale5 = \
set_prompt_loras(prompt, syntax_weights, model_name, lora1, lora_scale1, lora2, lora_scale2, lora3,
lora_scale3, lora4, lora_scale4, lora5, lora_scale5)
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
## END MOD
task = TASK_STABLEPY[task]
params_ip_img = []
params_ip_msk = []
params_ip_model = []
params_ip_mode = []
params_ip_scale = []
all_adapters = [
(image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1),
(image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2),
]
for imgip, mskip, modelip, modeip, scaleip in all_adapters:
if imgip:
params_ip_img.append(imgip)
if mskip:
params_ip_msk.append(mskip)
params_ip_model.append(modelip)
params_ip_mode.append(modeip)
params_ip_scale.append(scaleip)
self.model.stream_config(concurrency=5, latent_resize_by=1, vae_decoding=False)
if task != "txt2img" and not image_control:
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")
if task == "inpaint" and not image_mask:
raise ValueError("No mask image found: Specify one in 'Image Mask'")
if upscaler_model_path in UPSCALER_KEYS[:9]:
upscaler_model = upscaler_model_path
else:
directory_upscalers = 'upscalers'
os.makedirs(directory_upscalers, exist_ok=True)
url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path]
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
download_things(directory_upscalers, url_upscaler, HF_TOKEN)
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
adetailer_params_A = {
"face_detector_ad": face_detector_ad_a,
"person_detector_ad": person_detector_ad_a,
"hand_detector_ad": hand_detector_ad_a,
"prompt": prompt_ad_a,
"negative_prompt": negative_prompt_ad_a,
"strength": strength_ad_a,
# "image_list_task" : None,
"mask_dilation": mask_dilation_a,
"mask_blur": mask_blur_a,
"mask_padding": mask_padding_a,
"inpaint_only": adetailer_inpaint_only,
"sampler": adetailer_sampler,
}
adetailer_params_B = {
"face_detector_ad": face_detector_ad_b,
"person_detector_ad": person_detector_ad_b,
"hand_detector_ad": hand_detector_ad_b,
"prompt": prompt_ad_b,
"negative_prompt": negative_prompt_ad_b,
"strength": strength_ad_b,
# "image_list_task" : None,
"mask_dilation": mask_dilation_b,
"mask_blur": mask_blur_b,
"mask_padding": mask_padding_b,
}
pipe_params = {
"prompt": prompt,
"negative_prompt": neg_prompt,
"img_height": img_height,
"img_width": img_width,
"num_images": num_images,
"num_steps": steps,
"guidance_scale": cfg,
"clip_skip": clip_skip,
"pag_scale": float(pag_scale),
"seed": seed,
"image": image_control,
"preprocessor_name": preprocessor_name,
"preprocess_resolution": preprocess_resolution,
"image_resolution": image_resolution,
"style_prompt": style_prompt if style_prompt else "",
"style_json_file": "",
"image_mask": image_mask, # only for Inpaint
"strength": strength, # only for Inpaint or ...
"low_threshold": low_threshold,
"high_threshold": high_threshold,
"value_threshold": value_threshold,
"distance_threshold": distance_threshold,
"lora_A": lora1 if lora1 != "None" else None,
"lora_scale_A": lora_scale1,
"lora_B": lora2 if lora2 != "None" else None,
"lora_scale_B": lora_scale2,
"lora_C": lora3 if lora3 != "None" else None,
"lora_scale_C": lora_scale3,
"lora_D": lora4 if lora4 != "None" else None,
"lora_scale_D": lora_scale4,
"lora_E": lora5 if lora5 != "None" else None,
"lora_scale_E": lora_scale5,
## BEGIN MOD
"textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
## END MOD
"syntax_weights": syntax_weights, # "Classic"
"sampler": sampler,
"xformers_memory_efficient_attention": xformers_memory_efficient_attention,
"gui_active": True,
"loop_generation": loop_generation,
"controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet),
"control_guidance_start": float(controlnet_start_threshold),
"control_guidance_end": float(controlnet_stop_threshold),
"generator_in_cpu": generator_in_cpu,
"FreeU": freeu,
"adetailer_A": adetailer_active_a,
"adetailer_A_params": adetailer_params_A,
"adetailer_B": adetailer_active_b,
"adetailer_B_params": adetailer_params_B,
"leave_progress_bar": leave_progress_bar,
"disable_progress_bar": disable_progress_bar,
"image_previews": image_previews,
"display_images": display_images,
"save_generated_images": save_generated_images,
"image_storage_location": image_storage_location,
"retain_compel_previous_load": retain_compel_previous_load,
"retain_detailfix_model_previous_load": retain_detailfix_model_previous_load,
"retain_hires_model_previous_load": retain_hires_model_previous_load,
"t2i_adapter_preprocessor": t2i_adapter_preprocessor,
"t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale),
"t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor),
"upscaler_model_path": upscaler_model,
"upscaler_increases_size": upscaler_increases_size,
"esrgan_tile": esrgan_tile,
"esrgan_tile_overlap": esrgan_tile_overlap,
"hires_steps": hires_steps,
"hires_denoising_strength": hires_denoising_strength,
"hires_prompt": hires_prompt,
"hires_negative_prompt": hires_negative_prompt,
"hires_sampler": hires_sampler,
"hires_before_adetailer": hires_before_adetailer,
"hires_after_adetailer": hires_after_adetailer,
"ip_adapter_image": params_ip_img,
"ip_adapter_mask": params_ip_msk,
"ip_adapter_model": params_ip_model,
"ip_adapter_mode": params_ip_mode,
"ip_adapter_scale": params_ip_scale,
}
self.model.device = torch.device("cuda:0")
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5:
self.model.pipe.transformer.to(self.model.device)
print("transformer to cuda")
#progress(0, desc="Preparation completed. Starting inference...")
info_state = "PROCESSING "
for img, seed, image_path, metadata in self.model(**pipe_params):
info_state += ">"
if image_path:
info_state = f"COMPLETE. Seeds: {str(seed)}"
if vae_msg:
info_state = info_state + "<br>" + vae_msg
for status, lora in zip(self.model.lora_status, self.model.lora_memory):
if status:
msg_lora += f"<br>Loaded: {lora}"
elif status is not None:
msg_lora += f"<br>Error with: {lora}"
if msg_lora:
info_state += msg_lora
info_state = info_state + "<br>" + "GENERATION DATA:<br>" + "<br>-------<br>".join(metadata).replace("\n", "<br>")
download_links = "<br>".join(
[
f'<a href="{path.replace("/images/", "/file=/home/user/app/images/")}" download="{os.path.basename(path)}">Download Image {i + 1}</a>'
for i, path in enumerate(image_path)
]
)
if save_generated_images:
info_state += f"<br>{download_links}"
img = save_images(img, metadata)
yield img, info_state
def update_task_options(model_name, task_name):
new_choices = MODEL_TYPE_TASK[get_model_type(model_name)]
if task_name not in new_choices:
task_name = "txt2img"
return gr.update(value=task_name, choices=new_choices)
def dynamic_gpu_duration(func, duration, *args):
@spaces.GPU(duration=duration)
def wrapped_func():
yield from func(*args)
return wrapped_func()
@spaces.GPU
def dummy_gpu():
return None
def sd_gen_generate_pipeline(*args):
gpu_duration_arg = int(args[-1]) if args[-1] else 59
verbose_arg = int(args[-2])
load_lora_cpu = args[-3]
generation_args = args[:-3]
lora_list = [
None if item == "None" or item == "" else item
for item in [args[7], args[9], args[11], args[13], args[15]]
]
lora_status = [None] * 5
msg_load_lora = "Updating LoRAs in GPU..."
if load_lora_cpu:
msg_load_lora = "Updating LoRAs in CPU (Slow but saves GPU usage)..."
if lora_list != sd_gen.model.lora_memory and lora_list != [None] * 5:
yield None, msg_load_lora
# Load lora in CPU
if load_lora_cpu:
lora_status = sd_gen.model.lora_merge(
lora_A=lora_list[0], lora_scale_A=args[8],
lora_B=lora_list[1], lora_scale_B=args[10],
lora_C=lora_list[2], lora_scale_C=args[12],
lora_D=lora_list[3], lora_scale_D=args[14],
lora_E=lora_list[4], lora_scale_E=args[16],
)
print(lora_status)
if verbose_arg:
for status, lora in zip(lora_status, lora_list):
if status:
gr.Info(f"LoRA loaded in CPU: {lora}")
elif status is not None:
gr.Warning(f"Failed to load LoRA: {lora}")
if lora_status == [None] * 5 and sd_gen.model.lora_memory != [None] * 5 and load_lora_cpu:
lora_cache_msg = ", ".join(
str(x) for x in sd_gen.model.lora_memory if x is not None
)
gr.Info(f"LoRAs in cache: {lora_cache_msg}")
msg_request = f"Requesting {gpu_duration_arg}s. of GPU time"
gr.Info(msg_request)
print(msg_request)
# yield from sd_gen.generate_pipeline(*generation_args)
start_time = time.time()
yield from dynamic_gpu_duration(
sd_gen.generate_pipeline,
gpu_duration_arg,
*generation_args,
)
end_time = time.time()
if verbose_arg:
execution_time = end_time - start_time
msg_task_complete = (
f"GPU task complete in: {round(execution_time, 0) + 1} seconds"
)
gr.Info(msg_task_complete)
print(msg_task_complete)
dynamic_gpu_duration.zerogpu = True
sd_gen_generate_pipeline.zerogpu = True
sd_gen = GuiSD()
## BEGIN MOD
CSS ="""
.gradio-container, #main { width:100%; height:100%; max-width:100%; padding-left:0; padding-right:0; margin-left:0; margin-right:0; !important; }
.contain { display:flex; flex-direction:column; !important; }
#component-0 { width:100%; height:100%; !important; }
#gallery { flex-grow:1; !important; }
.lora { min-width:480px; !important; }
#model-info { text-align:center; }
"""
with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, css=CSS, delete_cache=(60, 3600)) as app:
gr.Markdown("# 🧩 DiffuseCraft Mod")
gr.Markdown(
f"""
This space is a modification of [r3gm's DiffuseCraft](https://huggingface.co/spaces/r3gm/DiffuseCraft).
"""
)
with gr.Column():
with gr.Tab("Generation"):
with gr.Row():
with gr.Column(scale=2):
interface_mode_gui = gr.Radio(label="Quick settings", choices=["Simple", "Standard", "Fast", "LoRA"], value="Standard")
with gr.Accordion("Model and Task", open=False) as menu_model:
task_gui = gr.Dropdown(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0])
with gr.Group():
model_name_gui = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.", choices=get_tupled_model_list(model_list), value="votepurchase/animagine-xl-3.1", allow_custom_value=True)
model_info_gui = gr.Markdown(elem_id="model-info")
with gr.Row():
quick_model_type_gui = gr.Radio(label="Model Type", choices=["None", "Auto", "Animagine", "Pony"], value="Auto", interactive=True)
quick_genre_gui = gr.Radio(label="Genre", choices=["Anime", "Photo"], value="Anime", interactive=True)
quick_speed_gui = gr.Radio(label="Speed", choices=["Fast", "Standard", "Heavy"], value="Standard", interactive=True)
quick_aspect_gui = gr.Radio(label="Aspect Ratio", choices=["1:1", "3:4"], value="1:1", interactive=True)
with gr.Row():
quality_selector_gui = gr.Dropdown(label="Quality Tags Presets", interactive=True, choices=list(preset_quality.keys()), value="None")
style_selector_gui = gr.Dropdown(label="Style Preset", interactive=True, choices=list(preset_styles.keys()), value="None")
sampler_selector_gui = gr.Dropdown(label="Sampler Quick Settings", interactive=True, choices=list(preset_sampler_setting.keys()), value="None")
optimization_gui = gr.Dropdown(label="Optimization for SDXL", choices=list(optimization_list.keys()), value="None", interactive=True)
with gr.Group():
with gr.Accordion("Prompt from Image", open=False) as menu_from_image:
input_image_gui = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
with gr.Accordion(label="Advanced options", open=False):
with gr.Row():
general_threshold_gui = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
character_threshold_gui = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
with gr.Row():
tag_type_gui = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
recom_prompt_gui = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
keep_tags_gui = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
image_algorithms = gr.CheckboxGroup(["Use WD Tagger"], label="Algorithms", value=["Use WD Tagger"], visible=False)
generate_from_image_btn_gui = gr.Button(value="GENERATE TAGS FROM IMAGE")
prompt_gui = gr.Textbox(lines=6, placeholder="1girl, solo, ...", label="Prompt", show_copy_button=True)
with gr.Accordion("Negative prompt, etc.", open=False) as menu_negative:
neg_prompt_gui = gr.Textbox(lines=3, placeholder="lowres, (bad), ...", label="Negative prompt", show_copy_button=True)
translate_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary")
with gr.Row():
insert_prompt_gui = gr.Radio(label="Insert reccomended positive / negative prompt", choices=["None", "Auto", "Animagine", "Pony"], value="Auto", interactive=True)
prompt_type_gui = gr.Radio(label="Convert tags to", choices=["danbooru", "e621"], value="e621", visible=False)
prompt_type_button = gr.Button(value="Convert prompt to Pony e621 style", size="sm", variant="secondary")
with gr.Row():
character_dbt = gr.Textbox(lines=1, placeholder="kafuu chino, ...", label="Character names")
series_dbt = gr.Textbox(lines=1, placeholder="Is the order a rabbit?, ...", label="Series names")
random_character_gui = gr.Button(value="Random character 🎲", size="sm", variant="secondary")
model_name_dbt = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0], visible=False)
aspect_ratio_dbt = gr.Radio(label="Aspect ratio", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
length_dbt = gr.Radio(label="Length", choices=list(V2_LENGTH_OPTIONS), value="very_long", visible=False)
identity_dbt = gr.Radio(label="Keep identity", choices=list(V2_IDENTITY_OPTIONS), value="lax", visible=False)
ban_tags_dbt = gr.Textbox(label="Ban tags", placeholder="alternate costumen, ...", value="futanari, censored, furry, furrification", visible=False)
copy_button_dbt = gr.Button(value="Copy to clipboard", visible=False)
rating_dbt = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
generate_db_random_button = gr.Button(value="EXTEND PROMPT 🎲")
with gr.Row():
translate_prompt_gui = gr.Button(value="Translate Prompt 📝", variant="secondary", size="sm")
set_random_seed = gr.Button(value="Seed 🎲", variant="secondary", size="sm")
set_params_gui = gr.Button(value="Params ↙️", variant="secondary", size="sm")
clear_prompt_gui = gr.Button(value="Clear 🗑️", variant="secondary", size="sm")
generate_button = gr.Button(value="GENERATE IMAGE", size="lg", variant="primary")
model_name_gui.change(
update_task_options,
[model_name_gui, task_gui],
[task_gui],
)
load_model_gui = gr.HTML()
result_images = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
columns=[2],
rows=[2],
object_fit="contain",
# height="auto",
interactive=False,
preview=False,
show_share_button=False,
show_download_button=True,
selected_index=50,
format="png",
)
result_images_files = gr.Files(interactive=False, visible=False)
actual_task_info = gr.HTML()
with gr.Row(equal_height=False, variant="default"):
gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)")
with gr.Column():
verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info")
load_lora_cpu_gui = gr.Checkbox(value=False, container=False, label="Load LoRAs on CPU (Save GPU time)")
with gr.Column(scale=1):
with gr.Accordion("Generation settings", open=False, visible=True) as menu_gen:
with gr.Row():
img_width_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Width")
img_height_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Height")
steps_gui = gr.Slider(minimum=1, maximum=100, step=1, value=28, label="Steps")
cfg_gui = gr.Slider(minimum=0, maximum=30, step=0.5, value=7.0, label="CFG")
with gr.Row():
seed_gui = gr.Number(minimum=-1, maximum=2**32-1, value=-1, label="Seed")
pag_scale_gui = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale")
num_images_gui = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Images")
clip_skip_gui = gr.Checkbox(value=False, label="Layer 2 Clip Skip")
free_u_gui = gr.Checkbox(value=False, label="FreeU")
with gr.Row():
sampler_gui = gr.Dropdown(label="Sampler", choices=scheduler_names, value="Euler a")
vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list)
prompt_s_options = [
("Compel format: (word)weight", "Compel"),
("Classic format: (word:weight)", "Classic"),
("Classic-original format: (word:weight)", "Classic-original"),
("Classic-no_norm format: (word:weight)", "Classic-no_norm"),
("Classic-ignore", "Classic-ignore"),
("None", "None"),
]
prompt_syntax_gui = gr.Dropdown(label="Prompt Syntax", choices=prompt_s_options, value=prompt_s_options[1][1])
with gr.Row(equal_height=False):
def run_set_params_gui(base_prompt):
valid_receptors = { # default values
"prompt": gr.update(value=base_prompt),
"neg_prompt": gr.update(value=""),
"Steps": gr.update(value=30),
"width": gr.update(value=1024),
"height": gr.update(value=1024),
"Seed": gr.update(value=-1),
"Sampler": gr.update(value="Euler a"),
"scale": gr.update(value=7.5), # cfg
"skip": gr.update(value=True),
}
valid_keys = list(valid_receptors.keys())
parameters = extract_parameters(base_prompt)
for key, val in parameters.items():
# print(val)
if key in valid_keys:
if key == "Sampler":
if val not in scheduler_names:
continue
elif key == "skip":
if int(val) >= 2:
val = True
if key == "prompt":
if ">" in val and "<" in val:
val = re.sub(r'<[^>]+>', '', val)
print("Removed LoRA written in the prompt")
if key in ["prompt", "neg_prompt"]:
val = val.strip()
if key in ["Steps", "width", "height", "Seed"]:
val = int(val)
if key == "scale":
val = float(val)
if key == "Seed":
continue
valid_receptors[key] = gr.update(value=val)
# print(val, type(val))
# print(valid_receptors)
return [value for value in valid_receptors.values()]
set_params_gui.click(
run_set_params_gui, [prompt_gui],[
prompt_gui,
neg_prompt_gui,
steps_gui,
img_width_gui,
img_height_gui,
seed_gui,
sampler_gui,
cfg_gui,
clip_skip_gui,
],
)
def run_clear_prompt_gui():
return gr.update(value=""), gr.update(value="")
clear_prompt_gui.click(
run_clear_prompt_gui, [], [prompt_gui, neg_prompt_gui]
)
def run_set_random_seed():
return -1
set_random_seed.click(
run_set_random_seed, [], seed_gui
)
with gr.Accordion("LoRA", open=False, visible=True) as menu_lora:
def lora_dropdown(label):
return gr.Dropdown(label=label, choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
def lora_scale_slider(label):
return gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label=label)
def lora_textbox(label):
return gr.Textbox(label=label, info="Example of prompt:", value="None", show_copy_button=True, interactive=False, visible=False)
with gr.Row():
with gr.Column():
lora1_gui = lora_dropdown("LoRA1")
lora_scale_1_gui = lora_scale_slider("LoRA Scale 1")
with gr.Row():
with gr.Group():
lora1_info_gui = lora_textbox("LoRA1 prompts")
lora1_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
lora1_desc_gui = gr.Markdown(value="", visible=False)
with gr.Column():
lora2_gui = lora_dropdown("LoRA2")
lora_scale_2_gui = lora_scale_slider("LoRA Scale 2")
with gr.Row():
with gr.Group():
lora2_info_gui = lora_textbox("LoRA2 prompts")
lora2_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
lora2_desc_gui = gr.Markdown(value="", visible=False)
with gr.Column():
lora3_gui = lora_dropdown("LoRA3")
lora_scale_3_gui = lora_scale_slider("LoRA Scale 3")
with gr.Row():
with gr.Group():
lora3_info_gui = lora_textbox("LoRA3 prompts")
lora3_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
lora3_desc_gui = gr.Markdown(value="", visible=False)
with gr.Column():
lora4_gui = lora_dropdown("LoRA4")
lora_scale_4_gui = lora_scale_slider("LoRA Scale 4")
with gr.Row():
with gr.Group():
lora4_info_gui = lora_textbox("LoRA4 prompts")
lora4_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
lora4_desc_gui = gr.Markdown(value="", visible=False)
with gr.Column():
lora5_gui = lora_dropdown("LoRA5")
lora_scale_5_gui = lora_scale_slider("LoRA Scale 5")
with gr.Row():
with gr.Group():
lora5_info_gui = lora_textbox("LoRA5 prompts")
lora5_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
lora5_desc_gui = gr.Markdown(value="", visible=False)
with gr.Accordion("From URL", open=True, visible=True):
with gr.Row():
search_civitai_basemodel_lora = gr.CheckboxGroup(label="Search LoRA for", choices=["Pony", "SD 1.5", "SDXL 1.0", "Flux.1 D", "Flux.1 S"], value=["Pony", "SDXL 1.0"])
search_civitai_sort_lora = gr.Radio(label="Sort", choices=["Highest Rated", "Most Downloaded", "Newest"], value="Highest Rated")
search_civitai_period_lora = gr.Radio(label="Period", choices=["AllTime", "Year", "Month", "Week", "Day"], value="AllTime")
with gr.Row():
search_civitai_query_lora = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
search_civitai_tag_lora = gr.Textbox(label="Tag", lines=1)
search_civitai_button_lora = gr.Button("Search on Civitai")
search_civitai_desc_lora = gr.Markdown(value="", visible=False)
search_civitai_result_lora = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
text_lora = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
button_lora = gr.Button("Get and update lists of LoRAs")
with gr.Accordion("From Local", open=True, visible=True):
file_output_lora = gr.File(label="Uploaded LoRA", file_types=['.ckpt', '.pt', '.pth', '.safetensors', '.bin'], file_count="multiple", interactive=False, visible=False)
upload_button_lora = gr.UploadButton(label="Upload LoRA from your disk (very slow)", file_types=['.ckpt', '.pt', '.pth', '.safetensors', '.bin'], file_count="multiple")
with gr.Column() as menu_advanced:
with gr.Accordion("Hires fix", open=False, visible=True) as menu_hires:
upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0])
with gr.Row():
upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=6., step=0.1, value=1.0, label="Upscale by")
esrgan_tile_gui = gr.Slider(minimum=0, value=100, maximum=500, step=1, label="ESRGAN Tile")
esrgan_tile_overlap_gui = gr.Slider(minimum=1, maximum=200, step=1, value=10, label="ESRGAN Tile Overlap")
with gr.Row():
hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps")
hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength")
hires_sampler_gui = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
hires_prompt_gui = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3)
hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3)
with gr.Accordion("Detailfix", open=False, visible=True) as menu_detail:
with gr.Row():
# Adetailer Inpaint Only
adetailer_inpaint_only_gui = gr.Checkbox(label="Inpaint only", value=True)
# Adetailer Verbose
adetailer_verbose_gui = gr.Checkbox(label="Verbose", value=False)
# Adetailer Sampler
adetailer_sampler_gui = gr.Dropdown(label="Adetailer sampler:", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
with gr.Accordion("Detailfix A", open=True, visible=True):
# Adetailer A
adetailer_active_a_gui = gr.Checkbox(label="Enable Adetailer A", value=False)
prompt_ad_a_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
negative_prompt_ad_a_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
with gr.Row():
strength_ad_a_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
face_detector_ad_a_gui = gr.Checkbox(label="Face detector", value=True)
person_detector_ad_a_gui = gr.Checkbox(label="Person detector", value=True)
hand_detector_ad_a_gui = gr.Checkbox(label="Hand detector", value=False)
with gr.Row():
mask_dilation_a_gui = gr.Number(label="Mask dilation:", value=4, minimum=1)
mask_blur_a_gui = gr.Number(label="Mask blur:", value=4, minimum=1)
mask_padding_a_gui = gr.Number(label="Mask padding:", value=32, minimum=1)
with gr.Accordion("Detailfix B", open=True, visible=True):
# Adetailer B
adetailer_active_b_gui = gr.Checkbox(label="Enable Adetailer B", value=False)
prompt_ad_b_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
negative_prompt_ad_b_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
with gr.Row():
strength_ad_b_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
face_detector_ad_b_gui = gr.Checkbox(label="Face detector", value=True)
person_detector_ad_b_gui = gr.Checkbox(label="Person detector", value=True)
hand_detector_ad_b_gui = gr.Checkbox(label="Hand detector", value=False)
with gr.Row():
mask_dilation_b_gui = gr.Number(label="Mask dilation:", value=4, minimum=1)
mask_blur_b_gui = gr.Number(label="Mask blur:", value=4, minimum=1)
mask_padding_b_gui = gr.Number(label="Mask padding:", value=32, minimum=1)
with gr.Accordion("Textual inversion", open=False, visible=True) as menu_ti:
active_textual_inversion_gui = gr.Checkbox(value=False, label="Active Textual Inversion in prompt")
use_textual_inversion_gui = gr.CheckboxGroup(choices=get_embed_list(get_model_pipeline(model_name_gui.value)) if active_textual_inversion_gui.value else [], value=None, label="Use Textual Invertion in prompt")
def update_textual_inversion_gui(active_textual_inversion_gui, model_name_gui):
return gr.update(choices=get_embed_list(get_model_pipeline(model_name_gui)) if active_textual_inversion_gui else [])
active_textual_inversion_gui.change(update_textual_inversion_gui, [active_textual_inversion_gui, model_name_gui], [use_textual_inversion_gui])
model_name_gui.change(update_textual_inversion_gui, [active_textual_inversion_gui, model_name_gui], [use_textual_inversion_gui])
with gr.Accordion("ControlNet / Img2img / Inpaint", open=False, visible=True) as menu_i2i:
with gr.Row():
image_control = gr.Image(label="Image ControlNet/Inpaint/Img2img", type="filepath")
image_mask_gui = gr.Image(label="Image Mask", type="filepath")
with gr.Row():
strength_gui = gr.Slider(
minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength",
info="This option adjusts the level of changes for img2img and inpainting."
)
image_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution")
preprocessor_name_gui = gr.Dropdown(label="Preprocessor Name", choices=PREPROCESSOR_CONTROLNET["canny"])
def change_preprocessor_choices(task):
task = TASK_STABLEPY[task]
if task in PREPROCESSOR_CONTROLNET.keys():
choices_task = PREPROCESSOR_CONTROLNET[task]
else:
choices_task = PREPROCESSOR_CONTROLNET["canny"]
return gr.update(choices=choices_task, value=choices_task[0])
task_gui.change(
change_preprocessor_choices,
[task_gui],
[preprocessor_name_gui],
)
with gr.Row():
preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocess Resolution")
low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="Canny low threshold")
high_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="Canny high threshold")
value_threshold_gui = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="Hough value threshold (MLSD)")
with gr.Row():
distance_threshold_gui = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="Hough distance threshold (MLSD)")
control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet")
control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)")
control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)")
with gr.Accordion("IP-Adapter", open=False, visible=True) as menu_ipa:
IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL)))
MODE_IP_OPTIONS = ["original", "style", "layout", "style+layout"]
with gr.Accordion("IP-Adapter 1", open=True, visible=True):
with gr.Row():
image_ip1 = gr.Image(label="IP Image", type="filepath")
mask_ip1 = gr.Image(label="IP Mask", type="filepath")
with gr.Row():
model_ip1 = gr.Dropdown(value="plus_face", label="Model", choices=IP_MODELS)
mode_ip1 = gr.Dropdown(value="original", label="Mode", choices=MODE_IP_OPTIONS)
scale_ip1 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale")
with gr.Accordion("IP-Adapter 2", open=True, visible=True):
with gr.Row():
image_ip2 = gr.Image(label="IP Image", type="filepath")
mask_ip2 = gr.Image(label="IP Mask (optional)", type="filepath")
with gr.Row():
model_ip2 = gr.Dropdown(value="base", label="Model", choices=IP_MODELS)
mode_ip2 = gr.Dropdown(value="style", label="Mode", choices=MODE_IP_OPTIONS)
scale_ip2 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale")
with gr.Accordion("T2I adapter", open=False, visible=True) as menu_t2i:
t2i_adapter_preprocessor_gui = gr.Checkbox(value=True, label="T2i Adapter Preprocessor")
with gr.Row():
adapter_conditioning_scale_gui = gr.Slider(minimum=0, maximum=5., step=0.1, value=1, label="Adapter Conditioning Scale")
adapter_conditioning_factor_gui = gr.Slider(minimum=0, maximum=1., step=0.01, value=0.55, label="Adapter Conditioning Factor (%)")
with gr.Accordion("Styles", open=False, visible=True) as menu_styles:
try:
style_names_found = sd_gen.model.STYLE_NAMES
except Exception:
style_names_found = STYLE_NAMES
style_prompt_gui = gr.Dropdown(
style_names_found,
multiselect=True,
value=None,
label="Style Prompt",
interactive=True,
)
style_json_gui = gr.File(label="Style JSON File")
style_button = gr.Button("Load styles")
def load_json_style_file(json):
if not sd_gen.model:
gr.Info("First load the model")
return gr.update(value=None, choices=STYLE_NAMES)
sd_gen.model.load_style_file(json)
gr.Info(f"{len(sd_gen.model.STYLE_NAMES)} styles loaded")
return gr.update(value=None, choices=sd_gen.model.STYLE_NAMES)
style_button.click(load_json_style_file, [style_json_gui], [style_prompt_gui])
with gr.Accordion("Other settings", open=False, visible=True) as menu_other:
with gr.Row():
hires_before_adetailer_gui = gr.Checkbox(value=False, label="Hires Before Adetailer")
hires_after_adetailer_gui = gr.Checkbox(value=True, label="Hires After Adetailer")
generator_in_cpu_gui = gr.Checkbox(value=False, label="Generator in CPU")
with gr.Accordion("More settings", open=False, visible=False):
loop_generation_gui = gr.Slider(minimum=1, value=1, label="Loop Generation")
retain_task_cache_gui = gr.Checkbox(value=True, label="Retain task model in cache")
leave_progress_bar_gui = gr.Checkbox(value=True, label="Leave Progress Bar")
disable_progress_bar_gui = gr.Checkbox(value=False, label="Disable Progress Bar")
display_images_gui = gr.Checkbox(value=False, label="Display Images")
image_previews_gui = gr.Checkbox(value=True, label="Image Previews")
save_generated_images_gui = gr.Checkbox(value=False, label="Save Generated Images")
image_storage_location_gui = gr.Textbox(value="./images", label="Image Storage Location")
retain_compel_previous_load_gui = gr.Checkbox(value=False, label="Retain Compel Previous Load")
retain_detailfix_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Detailfix Model Previous Load")
retain_hires_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Hires Model Previous Load")
xformers_memory_efficient_attention_gui = gr.Checkbox(value=False, label="Xformers Memory Efficient Attention")
with gr.Accordion("Examples and help", open=True, visible=True) as menu_example:
gr.Examples(
examples=[
[
"1girl, souryuu asuka langley, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors, masterpiece, best quality, very aesthetic, absurdres",
"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
1,
30,
7.5,
True,
-1,
"Euler a",
1152,
896,
"votepurchase/animagine-xl-3.1",
],
[
"solo, princess Zelda OOT, score_9, score_8_up, score_8, medium breasts, cute, eyelashes, cute small face, long hair, crown braid, hairclip, pointy ears, soft curvy body, looking at viewer, smile, blush, white dress, medium body, (((holding the Master Sword))), standing, deep forest in the background",
"score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white,",
1,
30,
5.,
True,
-1,
"Euler a",
1024,
1024,
"votepurchase/ponyDiffusionV6XL",
],
[
"1girl, oomuro sakurako, yuru yuri, official art, school uniform, anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
"photo, deformed, black and white, realism, disfigured, low contrast, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
1,
40,
7.0,
True,
-1,
"Euler a",
1024,
1024,
"Raelina/Rae-Diffusion-XL-V2",
],
[
"1girl, akaza akari, yuru yuri, official art, anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
"photo, deformed, black and white, realism, disfigured, low contrast, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
1,
35,
7.0,
True,
-1,
"Euler a",
1024,
1024,
"Raelina/Raemu-XL-V4",
],
[
"yoshida yuuko, machikado mazoku, 1girl, solo, demon horns,horns, school uniform, long hair, open mouth, skirt, demon girl, ahoge, shiny, shiny hair, anime artwork",
"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
1,
50,
7.,
True,
-1,
"Euler a",
1024,
1024,
"cagliostrolab/animagine-xl-3.1",
],
],
fn=sd_gen.generate_pipeline,
inputs=[
prompt_gui,
neg_prompt_gui,
num_images_gui,
steps_gui,
cfg_gui,
clip_skip_gui,
seed_gui,
sampler_gui,
img_height_gui,
img_width_gui,
model_name_gui,
],
outputs=[result_images, actual_task_info],
cache_examples=False,
#elem_id="examples",
)
## END MOD
with gr.Tab("Inpaint mask maker", render=True):
def create_mask_now(img, invert):
import numpy as np
import time
time.sleep(0.5)
transparent_image = img["layers"][0]
# Extract the alpha channel
alpha_channel = np.array(transparent_image)[:, :, 3]
# Create a binary mask by thresholding the alpha channel
binary_mask = alpha_channel > 1
if invert:
print("Invert")
# Invert the binary mask so that the drawn shape is white and the rest is black
binary_mask = np.invert(binary_mask)
# Convert the binary mask to a 3-channel RGB mask
rgb_mask = np.stack((binary_mask,) * 3, axis=-1)
# Convert the mask to uint8
rgb_mask = rgb_mask.astype(np.uint8) * 255
return img["background"], rgb_mask
with gr.Row():
with gr.Column(scale=2):
# image_base = gr.ImageEditor(label="Base image", show_label=True, brush=gr.Brush(colors=["#000000"]))
image_base = gr.ImageEditor(
sources=["upload", "clipboard"],
# crop_size="1:1",
# enable crop (or disable it)
# transforms=["crop"],
brush=gr.Brush(
default_size="16", # or leave it as 'auto'
color_mode="fixed", # 'fixed' hides the user swatches and colorpicker, 'defaults' shows it
# default_color="black", # html names are supported
colors=[
"rgba(0, 0, 0, 1)", # rgb(a)
"rgba(0, 0, 0, 0.1)",
"rgba(255, 255, 255, 0.1)",
# "hsl(360, 120, 120)" # in fact any valid colorstring
]
),
eraser=gr.Eraser(default_size="16")
)
invert_mask = gr.Checkbox(value=False, label="Invert mask")
btn = gr.Button("Create mask")
with gr.Column(scale=1):
img_source = gr.Image(interactive=False)
img_result = gr.Image(label="Mask image", show_label=True, interactive=False)
btn_send = gr.Button("Send to the first tab")
btn.click(create_mask_now, [image_base, invert_mask], [img_source, img_result])
def send_img(img_source, img_result):
return img_source, img_result
btn_send.click(send_img, [img_source, img_result], [image_control, image_mask_gui])
## BEGIN MOD
interface_mode_gui.change(
change_interface_mode,
[interface_mode_gui],
[menu_model, menu_from_image, menu_negative, menu_gen, menu_hires, menu_lora, menu_advanced,
menu_example, task_gui, quick_speed_gui],
queue=False,
)
model_name_gui.change(get_t2i_model_info, [model_name_gui], [model_info_gui], queue=False)
translate_prompt_gui.click(translate_to_en, [prompt_gui], [prompt_gui], queue=False)\
.then(translate_to_en, [neg_prompt_gui], [neg_prompt_gui], queue=False)
gr.on(
triggers=[quick_model_type_gui.change, quick_genre_gui.change, quick_speed_gui.change, quick_aspect_gui.change],
fn=set_quick_presets,
inputs=[quick_genre_gui, quick_model_type_gui, quick_speed_gui, quick_aspect_gui],
outputs=[quality_selector_gui, style_selector_gui, sampler_selector_gui, optimization_gui, insert_prompt_gui],
queue=False,
trigger_mode="once",
)
gr.on(
triggers=[quality_selector_gui.change, style_selector_gui.change, insert_prompt_gui.change],
fn=process_style_prompt,
inputs=[prompt_gui, neg_prompt_gui, style_selector_gui, quality_selector_gui, insert_prompt_gui],
outputs=[prompt_gui, neg_prompt_gui, quick_model_type_gui],
queue=False,
trigger_mode="once",
)
sampler_selector_gui.change(set_sampler_settings, [sampler_selector_gui], [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui], queue=False)
optimization_gui.change(set_optimization, [optimization_gui, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora5_gui, lora_scale_5_gui], [steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora5_gui, lora_scale_5_gui], queue=False)
gr.on(
triggers=[lora1_gui.change, lora_scale_1_gui.change, lora2_gui.change, lora_scale_2_gui.change,
lora3_gui.change, lora_scale_3_gui.change, lora4_gui.change, lora_scale_4_gui.change,
lora5_gui.change, lora_scale_5_gui.change, prompt_syntax_gui.change],
fn=update_loras,
inputs=[prompt_gui, prompt_syntax_gui, lora1_gui, lora_scale_1_gui, lora2_gui, lora_scale_2_gui,
lora3_gui, lora_scale_3_gui, lora4_gui, lora_scale_4_gui, lora5_gui, lora_scale_5_gui],
outputs=[prompt_gui, lora1_gui, lora_scale_1_gui, lora1_info_gui, lora1_copy_gui, lora1_desc_gui,
lora2_gui, lora_scale_2_gui, lora2_info_gui, lora2_copy_gui, lora2_desc_gui,
lora3_gui, lora_scale_3_gui, lora3_info_gui, lora3_copy_gui, lora3_desc_gui,
lora4_gui, lora_scale_4_gui, lora4_info_gui, lora4_copy_gui, lora4_desc_gui,
lora5_gui, lora_scale_5_gui, lora5_info_gui, lora5_copy_gui, lora5_desc_gui],
queue=False,
trigger_mode="once",
)
lora1_copy_gui.click(apply_lora_prompt, [prompt_gui, lora1_info_gui], [prompt_gui], queue=False)
lora2_copy_gui.click(apply_lora_prompt, [prompt_gui, lora2_info_gui], [prompt_gui], queue=False)
lora3_copy_gui.click(apply_lora_prompt, [prompt_gui, lora3_info_gui], [prompt_gui], queue=False)
lora4_copy_gui.click(apply_lora_prompt, [prompt_gui, lora4_info_gui], [prompt_gui], queue=False)
lora5_copy_gui.click(apply_lora_prompt, [prompt_gui, lora5_info_gui], [prompt_gui], queue=False)
gr.on(
triggers=[search_civitai_button_lora.click, search_civitai_query_lora.submit, search_civitai_tag_lora.submit],
fn=search_civitai_lora,
inputs=[search_civitai_query_lora, search_civitai_basemodel_lora, search_civitai_sort_lora, search_civitai_period_lora, search_civitai_tag_lora],
outputs=[search_civitai_result_lora, search_civitai_desc_lora, search_civitai_button_lora, search_civitai_query_lora],
queue=True,
scroll_to_output=True,
)
search_civitai_result_lora.change(select_civitai_lora, [search_civitai_result_lora], [text_lora, search_civitai_desc_lora], queue=False, scroll_to_output=True)
button_lora.click(get_my_lora, [text_lora], [lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui], scroll_to_output=True)
upload_button_lora.upload(upload_file_lora, [upload_button_lora], [file_output_lora, upload_button_lora]).success(
move_file_lora, [file_output_lora], [lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui], scroll_to_output=True)
use_textual_inversion_gui.change(set_textual_inversion_prompt, [use_textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui], [prompt_gui, neg_prompt_gui])
generate_from_image_btn_gui.click(
lambda: ("", "", ""), None, [series_dbt, character_dbt, prompt_gui], queue=False,
).success(
predict_tags_wd,
[input_image_gui, prompt_gui, image_algorithms, general_threshold_gui, character_threshold_gui],
[series_dbt, character_dbt, prompt_gui, copy_button_dbt],
).success(
compose_prompt_to_copy, [character_dbt, series_dbt, prompt_gui], [prompt_gui], queue=False,
).success(
remove_specific_prompt, [prompt_gui, keep_tags_gui], [prompt_gui], queue=False,
).success(
convert_danbooru_to_e621_prompt, [prompt_gui, tag_type_gui], [prompt_gui], queue=False,
).success(
insert_recom_prompt, [prompt_gui, neg_prompt_gui, recom_prompt_gui], [prompt_gui, neg_prompt_gui], queue=False,
)
prompt_type_button.click(convert_danbooru_to_e621_prompt, [prompt_gui, prompt_type_gui], [prompt_gui], queue=False)
random_character_gui.click(select_random_character, [series_dbt, character_dbt], [series_dbt, character_dbt], queue=False)
generate_db_random_button.click(
v2_random_prompt,
[prompt_gui, series_dbt, character_dbt,
rating_dbt, aspect_ratio_dbt, length_dbt, identity_dbt, ban_tags_dbt, model_name_dbt],
[prompt_gui, series_dbt, character_dbt],
).success(
convert_danbooru_to_e621_prompt, [prompt_gui, tag_type_gui], [prompt_gui], queue=False,
)
translate_prompt_button.click(translate_prompt, [prompt_gui], [prompt_gui], queue=False)
translate_prompt_button.click(translate_prompt, [character_dbt], [character_dbt], queue=False)
translate_prompt_button.click(translate_prompt, [series_dbt], [series_dbt], queue=False)
generate_button.click(
fn=sd_gen.load_new_model,
inputs=[
model_name_gui,
vae_model_gui,
task_gui
],
outputs=[load_model_gui],
queue=True,
show_progress="minimal",
).success(
fn=sd_gen_generate_pipeline,
inputs=[
prompt_gui,
neg_prompt_gui,
num_images_gui,
steps_gui,
cfg_gui,
clip_skip_gui,
seed_gui,
lora1_gui,
lora_scale_1_gui,
lora2_gui,
lora_scale_2_gui,
lora3_gui,
lora_scale_3_gui,
lora4_gui,
lora_scale_4_gui,
lora5_gui,
lora_scale_5_gui,
sampler_gui,
img_height_gui,
img_width_gui,
model_name_gui,
vae_model_gui,
task_gui,
image_control,
preprocessor_name_gui,
preprocess_resolution_gui,
image_resolution_gui,
style_prompt_gui,
style_json_gui,
image_mask_gui,
strength_gui,
low_threshold_gui,
high_threshold_gui,
value_threshold_gui,
distance_threshold_gui,
control_net_output_scaling_gui,
control_net_start_threshold_gui,
control_net_stop_threshold_gui,
active_textual_inversion_gui,
prompt_syntax_gui,
upscaler_model_path_gui,
upscaler_increases_size_gui,
esrgan_tile_gui,
esrgan_tile_overlap_gui,
hires_steps_gui,
hires_denoising_strength_gui,
hires_sampler_gui,
hires_prompt_gui,
hires_negative_prompt_gui,
hires_before_adetailer_gui,
hires_after_adetailer_gui,
loop_generation_gui,
leave_progress_bar_gui,
disable_progress_bar_gui,
image_previews_gui,
display_images_gui,
save_generated_images_gui,
image_storage_location_gui,
retain_compel_previous_load_gui,
retain_detailfix_model_previous_load_gui,
retain_hires_model_previous_load_gui,
t2i_adapter_preprocessor_gui,
adapter_conditioning_scale_gui,
adapter_conditioning_factor_gui,
xformers_memory_efficient_attention_gui,
free_u_gui,
generator_in_cpu_gui,
adetailer_inpaint_only_gui,
adetailer_verbose_gui,
adetailer_sampler_gui,
adetailer_active_a_gui,
prompt_ad_a_gui,
negative_prompt_ad_a_gui,
strength_ad_a_gui,
face_detector_ad_a_gui,
person_detector_ad_a_gui,
hand_detector_ad_a_gui,
mask_dilation_a_gui,
mask_blur_a_gui,
mask_padding_a_gui,
adetailer_active_b_gui,
prompt_ad_b_gui,
negative_prompt_ad_b_gui,
strength_ad_b_gui,
face_detector_ad_b_gui,
person_detector_ad_b_gui,
hand_detector_ad_b_gui,
mask_dilation_b_gui,
mask_blur_b_gui,
mask_padding_b_gui,
retain_task_cache_gui,
image_ip1,
mask_ip1,
model_ip1,
mode_ip1,
scale_ip1,
image_ip2,
mask_ip2,
model_ip2,
mode_ip2,
scale_ip2,
pag_scale_gui,
load_lora_cpu_gui,
verbose_info_gui,
gpu_duration_gui,
],
outputs=[result_images, actual_task_info],
queue=True,
show_progress="full",
).success(save_gallery_images, [result_images], [result_images, result_images_files, result_images_files], queue=False, show_api=False)
with gr.Tab("Danbooru Tags Transformer with WD Tagger", render=True):
with gr.Column(scale=2):
with gr.Group():
input_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
with gr.Accordion(label="Advanced options", open=False):
general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
input_tag_type = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
image_algorithms = gr.CheckboxGroup(["Use WD Tagger"], label="Algorithms", value=["Use WD Tagger"], visible=False)
keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
generate_from_image_btn = gr.Button(value="GENERATE TAGS FROM IMAGE", size="lg", variant="primary")
with gr.Group():
with gr.Row():
input_character = gr.Textbox(label="Character tags", placeholder="hatsune miku")
input_copyright = gr.Textbox(label="Copyright tags", placeholder="vocaloid")
pick_random_character = gr.Button(value="Random character 🎲", size="sm")
input_general = gr.TextArea(label="General tags", lines=4, placeholder="1girl, ...", value="")
input_tags_to_copy = gr.Textbox(value="", visible=False)
with gr.Row():
copy_input_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
copy_prompt_btn_input = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
translate_input_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary")
tag_type = gr.Radio(label="Output tag conversion", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="e621", visible=False)
input_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="explicit")
with gr.Accordion(label="Advanced options", open=False):
input_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square")
input_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="very_long")
input_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
input_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
model_name = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
dummy_np = gr.Textbox(label="Negative prompt", value="", visible=False)
recom_animagine = gr.Textbox(label="Animagine reccomended prompt", value="Animagine", visible=False)
recom_pony = gr.Textbox(label="Pony reccomended prompt", value="Pony", visible=False)
generate_btn = gr.Button(value="GENERATE TAGS", size="lg", variant="primary")
with gr.Row():
with gr.Group():
output_text = gr.TextArea(label="Output tags", interactive=False, show_copy_button=True)
with gr.Row():
copy_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
copy_prompt_btn = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
with gr.Group():
output_text_pony = gr.TextArea(label="Output tags (Pony e621 style)", interactive=False, show_copy_button=True)
with gr.Row():
copy_btn_pony = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
copy_prompt_btn_pony = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
description_ui()
translate_input_prompt_button.click(translate_prompt, inputs=[input_general], outputs=[input_general], queue=False)
translate_input_prompt_button.click(translate_prompt, inputs=[input_character], outputs=[input_character], queue=False)
translate_input_prompt_button.click(translate_prompt, inputs=[input_copyright], outputs=[input_copyright], queue=False)
generate_from_image_btn.click(
lambda: ("", "", ""), None, [input_copyright, input_character, input_general], queue=False,
).success(
predict_tags_wd,
[input_image, input_general, image_algorithms, general_threshold, character_threshold],
[input_copyright, input_character, input_general, copy_input_btn],
).success(
remove_specific_prompt, inputs=[input_general, keep_tags], outputs=[input_general], queue=False,
).success(
convert_danbooru_to_e621_prompt, inputs=[input_general, input_tag_type], outputs=[input_general], queue=False,
).success(
insert_recom_prompt, inputs=[input_general, dummy_np, recom_prompt], outputs=[input_general, dummy_np], queue=False,
).success(lambda: gr.update(interactive=True), None, [copy_prompt_btn_input], queue=False)
copy_input_btn.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy])\
.success(gradio_copy_text, inputs=[input_tags_to_copy], js=COPY_ACTION_JS)
copy_prompt_btn_input.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy])\
.success(gradio_copy_prompt, inputs=[input_tags_to_copy], outputs=[prompt_gui])
pick_random_character.click(select_random_character, [input_copyright, input_character], [input_copyright, input_character])
generate_btn.click(
v2_upsampling_prompt,
[model_name, input_copyright, input_character, input_general,
input_rating, input_aspect_ratio, input_length, input_identity, input_ban_tags],
[output_text],
).success(
convert_danbooru_to_e621_prompt, inputs=[output_text, tag_type], outputs=[output_text_pony], queue=False,
).success(
insert_recom_prompt, inputs=[output_text, dummy_np, recom_animagine], outputs=[output_text, dummy_np], queue=False,
).success(
insert_recom_prompt, inputs=[output_text_pony, dummy_np, recom_pony], outputs=[output_text_pony, dummy_np], queue=False,
).success(lambda: (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)),
None, [copy_btn, copy_btn_pony, copy_prompt_btn, copy_prompt_btn_pony], queue=False)
copy_btn.click(gradio_copy_text, inputs=[output_text], js=COPY_ACTION_JS)
copy_btn_pony.click(gradio_copy_text, inputs=[output_text_pony], js=COPY_ACTION_JS)
copy_prompt_btn.click(gradio_copy_prompt, inputs=[output_text], outputs=[prompt_gui])
copy_prompt_btn_pony.click(gradio_copy_prompt, inputs=[output_text_pony], outputs=[prompt_gui])
gr.LoginButton()
gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)")
app.queue()
app.launch() # allowed_paths=["./images/"], show_error=True, debug=True
## END MOD
|