|
import os
|
|
|
|
import torch
|
|
import transformers
|
|
from peft import PeftModel
|
|
from transformers import LlamaForCausalLM, LlamaTokenizer
|
|
|
|
|
|
import argparse
|
|
parser = argparse.ArgumentParser(description='Merge Base Model and Lora')
|
|
parser.add_argument('--base_model', type=str, default="minlik/chinese-llama-7b-merged", help='base model path')
|
|
parser.add_argument('--lora_model', type=str, default="entity303/legal-lora-7b", help='lora model path')
|
|
parser.add_argument('--output_dir', type=str, default="./models/base_models/llama-7b-legal-lora-merged", help='output model path')
|
|
args = parser.parse_args()
|
|
|
|
BASE_MODEL = args.base_model
|
|
LORA_MODEL = args.lora_model
|
|
OUTPUT_DIR = args.output_dir
|
|
|
|
|
|
assert (
|
|
BASE_MODEL
|
|
), "Please specify a value for BASE_MODEL environment variable, e.g. `export BASE_MODEL=huggyllama/llama-7b`"
|
|
|
|
|
|
print(f"{'*'*20} Using base model: {BASE_MODEL} {'*'*20}")
|
|
print(f"{'*'*20} Using lora model: {LORA_MODEL} {'*'*20}")
|
|
print(f"{'*'*20} Saving to: {OUTPUT_DIR} {'*'*20}")
|
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
|
|
|
base_model = LlamaForCausalLM.from_pretrained(
|
|
BASE_MODEL,
|
|
load_in_8bit=False,
|
|
torch_dtype=torch.float16,
|
|
device_map={"": "cpu"},
|
|
)
|
|
|
|
first_weight = base_model.model.layers[0].self_attn.q_proj.weight
|
|
first_weight_old = first_weight.clone()
|
|
|
|
lora_model = PeftModel.from_pretrained(
|
|
base_model,
|
|
LORA_MODEL,
|
|
device_map={"": "cpu"},
|
|
torch_dtype=torch.float16,
|
|
)
|
|
|
|
lora_weight = lora_model.base_model.model.model.layers[
|
|
0
|
|
].self_attn.q_proj.weight
|
|
|
|
assert torch.allclose(first_weight_old, first_weight)
|
|
|
|
|
|
lora_model = lora_model.merge_and_unload()
|
|
|
|
lora_model.train(False)
|
|
|
|
|
|
assert not torch.allclose(first_weight_old, first_weight)
|
|
|
|
lora_model_sd = lora_model.state_dict()
|
|
deloreanized_sd = {
|
|
k.replace("base_model.model.", ""): v
|
|
for k, v in lora_model_sd.items()
|
|
if "lora" not in k
|
|
}
|
|
|
|
LlamaForCausalLM.save_pretrained(
|
|
base_model, OUTPUT_DIR, state_dict=deloreanized_sd, max_shard_size="2048MB"
|
|
)
|
|
|
|
LlamaTokenizer.save_pretrained(tokenizer, OUTPUT_DIR) |