|
import os |
|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from huggingface_hub import AsyncInferenceClient, login |
|
from translatepy import Translator |
|
import requests |
|
import re |
|
import asyncio |
|
from PIL import Image |
|
from gradio_client import Client, handle_file |
|
|
|
|
|
translator = Translator() |
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
basemodel = "black-forest-labs/FLUX.1-schnell" |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
CSS = "footer {visibility: hidden;}" |
|
JS = "function () {gradioURL = window.location.href;if (!gradioURL.endsWith('?__theme=dark')) {window.location.replace(gradioURL + '?__theme=dark');}}" |
|
|
|
|
|
def enable_lora(lora_add): |
|
if not lora_add: |
|
return basemodel |
|
else: |
|
return lora_add |
|
|
|
|
|
def get_upscale_finegrain(prompt, img_path, upscale_factor): |
|
client = Client("finegrain/finegrain-image-enhancer") |
|
result = client.predict( |
|
input_image=handle_file(img_path), |
|
prompt=prompt, |
|
negative_prompt="", |
|
seed=42, |
|
upscale_factor=upscale_factor, |
|
controlnet_scale=0.6, |
|
controlnet_decay=1, |
|
condition_scale=6, |
|
tile_width=112, |
|
tile_height=144, |
|
denoise_strength=0.35, |
|
num_inference_steps=18, |
|
solver="DDIM", |
|
api_name="/process" |
|
) |
|
return result[1] |
|
|
|
|
|
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed): |
|
if seed == -1: |
|
seed = random.randint(0, MAX_SEED) |
|
seed = int(seed) |
|
text = str(translator.translate(prompt, 'English')) + "," + lora_word |
|
async with AsyncInferenceClient() as client: |
|
try: |
|
image = await client.text_to_image( |
|
prompt=text, |
|
height=height, |
|
width=width, |
|
guidance_scale=scales, |
|
num_inference_steps=steps, |
|
model=model, |
|
) |
|
except Exception as e: |
|
raise gr.Error(f"Error in {e}") |
|
return image, seed |
|
|
|
|
|
async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor): |
|
model = enable_lora(lora_add) |
|
image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed) |
|
if upscale_factor != 0: |
|
upscaled_image = get_upscale_finegrain(prompt, image, upscale_factor) |
|
combined_image = Image.new('RGB', (image.width + upscaled_image.width, image.height)) |
|
combined_image.paste(image, (0, 0)) |
|
combined_image.paste(upscaled_image, (image.width, 0)) |
|
return combined_image, seed |
|
else: |
|
return image, seed |
|
|
|
|
|
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo: |
|
gr.HTML("<h1><center>Flux Lab Light</center></h1>") |
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
with gr.Row(): |
|
img = gr.Image(type="filepath", label='Comparison Image', height=600) |
|
with gr.Row(): |
|
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6) |
|
sendBtn = gr.Button(scale=1, variant='primary') |
|
with gr.Accordion("Advanced Options", open=True): |
|
with gr.Column(scale=1): |
|
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768) |
|
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1024) |
|
scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24) |
|
seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1) |
|
lora_add = gr.Textbox(label="Add Flux LoRA", info="Copy the HF LoRA model name here", lines=1, placeholder="Please use Warm status model") |
|
lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="") |
|
upscale_factor = gr.Radio(label="UpScale Factor", choices=[0, 2, 3, 4], value=0, scale=2) |
|
gr.on( |
|
triggers=[prompt.submit, sendBtn.click], |
|
fn=gen, |
|
inputs=[ |
|
prompt, |
|
lora_add, |
|
lora_word, |
|
width, |
|
height, |
|
scales, |
|
steps, |
|
seed, |
|
upscale_factor |
|
], |
|
outputs=[img, seed] |
|
) |