|
import os |
|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from huggingface_hub import AsyncInferenceClient |
|
|
|
from gradio_client import Client, handle_file |
|
from PIL import Image |
|
from huggingface_hub import login |
|
from themes import IndonesiaTheme |
|
from loras import loras |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
HF_TOKEN = os.getenv('HF_TOKEN_UPSCALER') |
|
HF_TOKEN_UPSCALER = os.getenv('HF_TOKEN_UPSCALER') |
|
qwen_client = Client("K00B404/HugChatWrap",hf_token=HF_TOKEN) |
|
loaded_loras=[] |
|
for lora in loras: |
|
print(lora.get('repo')) |
|
loaded_loras.append(lora.get('repo')) |
|
|
|
|
|
def enable_lora(lora_add, basemodel): |
|
print(f"[-] Determining model: LoRA {'enabled' if lora_add else 'disabled'}, base model: {basemodel}") |
|
return basemodel if not lora_add else lora_add |
|
|
|
def generate_character_description(character_prompt, system_message = """ |
|
You are a character description generator. Create detailed, vivid descriptions |
|
of characters including their physical appearance, personality, and notable features. Keep the |
|
description focused on visual elements that could be used for image generation. |
|
""" |
|
): |
|
"""Generate detailed character description using K00B404/HugChatWrap space""" |
|
try: |
|
result = qwen_client.predict( |
|
message=character_prompt, |
|
param_2=system_message, |
|
param_3=100, |
|
param_4=0.9, |
|
param_5=0.99, |
|
api_name="/chat" |
|
) |
|
|
|
return result |
|
except Exception as e: |
|
return f"Error generating description: {str(e)}" |
|
|
|
|
|
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed): |
|
try: |
|
if seed == -1: |
|
seed = random.randint(0, MAX_SEED) |
|
seed = int(seed) |
|
|
|
print(f"[-] Menerjemahkan prompt: {prompt}") |
|
|
|
|
|
print(f"[-] Generating image with prompt: {text}, model: {model}") |
|
client = AsyncInferenceClient() |
|
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model) |
|
return image, seed |
|
except Exception as e: |
|
print(f"[-] Error generating image: {e}") |
|
return None, None |
|
|
|
|
|
def get_upscale_finegrain(prompt, img_path, upscale_factor): |
|
try: |
|
print(f"[-] Processing with Factor {upscale_factor} for Image {img_path}") |
|
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER) |
|
result = client.predict( |
|
input_image=handle_file(img_path), |
|
prompt=prompt, |
|
negative_prompt="worst quality, low quality, normal quality", |
|
upscale_factor=upscale_factor, |
|
controlnet_scale=0.7, |
|
controlnet_decay=1, |
|
condition_scale=6, |
|
denoise_strength=0.33, |
|
num_inference_steps=20, |
|
solver="DDIM", |
|
api_name="/process" |
|
) |
|
print(f"[-] Proses upscaling berhasil.") |
|
return result[1] |
|
except Exception as e: |
|
print(f"[-] Error scaling image: {e}") |
|
return None |
|
|
|
|
|
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): |
|
print(f"[-] Memulai generasi gambar dengan prompt: {prompt}") |
|
|
|
model = enable_lora(lora_model, basemodel) if process_lora else basemodel |
|
print(f"[-] Menggunakan model: {model}") |
|
|
|
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed) |
|
|
|
if image is None: |
|
print("[-] Image generation failed.") |
|
return [] |
|
|
|
image_path = "temp_image.jpg" |
|
print(f"[-] Menyimpan gambar sementara di: {image_path}") |
|
image.save(image_path, format="JPEG") |
|
|
|
upscale_image_path = None |
|
if process_upscale: |
|
print(f"[-] Memproses upscaling dengan faktor: {upscale_factor}") |
|
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor) |
|
if upscale_image_path is not None and os.path.exists(upscale_image_path): |
|
print(f"[-] Proses upscaling selesai. Gambar tersimpan di: {upscale_image_path}") |
|
return [image_path, upscale_image_path] |
|
else: |
|
print("[-] Upscaling process, select the factor.") |
|
|
|
return [image_path] |
|
|
|
|
|
css = """ |
|
#col-left, #col-mid, #col-right { |
|
margin: 0 auto; |
|
max-width: 400px; |
|
padding: 10px; |
|
border-radius: 15px; |
|
background-color: #f9f9f9; |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); |
|
} |
|
#banner { |
|
width: 100%; |
|
text-align: center; |
|
margin-bottom: 20px; |
|
} |
|
#run-button { |
|
background-color: #ff4b5c; |
|
color: white; |
|
font-weight: bold; |
|
padding: 10px; |
|
border-radius: 10px; |
|
cursor: pointer; |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); |
|
} |
|
#footer { |
|
text-align: center; |
|
margin-top: 20px; |
|
color: silver; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(css=css, theme=IndonesiaTheme()) as WallpaperFluxMaker: |
|
|
|
gr.HTML('<div id="banner">✨ Flux MultiMode Generator + Upscaler ✨</div>') |
|
|
|
with gr.Column(elem_id="col-container"): |
|
|
|
with gr.Row(): |
|
output_res = gr.Gallery(label="⚡ Flux / Upscaled Image ⚡", elem_id="output-res", columns=2, height="auto") |
|
|
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=1, elem_id="col-left"): |
|
prompt = gr.Textbox( |
|
label="📜 Image Description", |
|
placeholder="Write your prompt in any language, and it will be automatically translated into English.", |
|
elem_id="textbox-prompt" |
|
) |
|
|
|
basemodel_choice = gr.Dropdown( |
|
label="🖼️ Select a Model", |
|
choices=[ |
|
"black-forest-labs/FLUX.1-schnell", |
|
"black-forest-labs/FLUX.1-dev", |
|
"black-forest-labs/FLUX.1-merged", |
|
"dataautogpt3/FLUX-SyntheticAnime", |
|
"Shakker-Labs/FLUX.1-dev-LoRA-AntiBlur" |
|
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", |
|
"Shakker-Labs/FLUX.1-dev-LoRA-add-details", |
|
"city96/FLUX.1-schnell-gguf" |
|
], |
|
value="black-forest-labs/FLUX.1-schnell" |
|
) |
|
|
|
lora_model_choice = gr.Dropdown( |
|
label="🎨 select a LoRA", |
|
choices=[ |
|
"Shakker-Labs/FLUX.1-dev-LoRA-add-details", |
|
"XLabs-AI/flux-RealismLora", |
|
"enhanceaiteam/Flux-uncensored", |
|
"Keltezaa/female-masturbation-fingering" |
|
]+loaded_loras, |
|
value="XLabs-AI/flux-RealismLora" |
|
) |
|
|
|
process_lora =gr.Checkbox(label="🎨 Use LoRA") |
|
process_upscale = gr.Checkbox(label="🔍 Upscale resolution") |
|
upscale_factor = gr.Radio(label="🔍 Upscale factor", choices=[2, 4, 8], value=2) |
|
|
|
|
|
with gr.Column(scale=1, elem_id="col-right"): |
|
with gr.Accordion(label="⚙️ Settings", open=True): |
|
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280) |
|
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768) |
|
scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8) |
|
seed = gr.Number(label="Seed", value=-1) |
|
|
|
|
|
btn = gr.Button("🚀 Bombs away!", elem_id="generate-btn") |
|
|
|
|
|
btn.click(fn=gen, inputs=[ |
|
prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora |
|
], outputs=output_res) |
|
|
|
|
|
WallpaperFluxMaker.queue(api_open=False).launch(show_api=True) |