Spaces:
Configuration error
Configuration error
File size: 1,993 Bytes
eb2d1d3 33de63c d588216 eb2d1d3 33de63c eb2d1d3 33de63c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
from utils.hparams import hparams
from preprocessing.data_gen_utils import get_pitch_parselmouth,get_pitch_crepe
import numpy as np
import matplotlib.pyplot as plt
import IPython.display as ipd
import utils
import librosa
import torchcrepe
from infer import *
import logging
from infer_tools.infer_tool import *
import io
def render_audio(audio_file):
print(audio_file)
############
logging.getLogger('numba').setLevel(logging.WARNING)
# 工程文件夹名,训练时用的那个
project_name = "Unnamed"
model_path = f'./checkpoints/Unnamed/model_ckpt_steps_192000.ckpt'
config_path=f'./checkpoints/Unnamed/config.yaml'
hubert_gpu=False
svc_model = Svc(project_name,config_path,hubert_gpu, model_path)
print('model loaded')
wav_fn = audio_file
demoaudio, sr = librosa.load(wav_fn)
key = -8 # 音高调整,支持正负(半音)
# 加速倍数
pndm_speedup = 20
wav_gen='queeeeee.wav'#直接改后缀可以保存不同格式音频,如flac可无损压缩
f0_tst, f0_pred, audio = run_clip(svc_model,file_path=wav_fn, key=key, acc=pndm_speedup, use_crepe=True, use_pe=True, thre=0.05,
use_gt_mel=False, add_noise_step=500,project_name=project_name,out_path=wav_gen)
def segment(audio):
pass # Implement your image segmentation model here...
demo = gr.Blocks()
with demo:
gr.Markdown("# **<p align='center'>DIFF-SVC Inference</p>**")
gr.Markdown(
"""
<p style='text-align: center'>
Render whatever model you want with this space!
</p>
"""
)
ckpt_file = gr.File(label= 'Load your CKPT', type="file")
config_file = gr.File(label= 'Load your Config File', type="file")
audio_file = gr.Audio(label = 'Load your WAV', type="filepath")
gr.Slider(2, 20, value=4)
b1 = gr.Button("Render")
b1.click(fn=render_audio, inputs=audio_file)
demo.launch() |