Files changed (1) hide show
  1. app.py +48 -25
app.py CHANGED
@@ -1,57 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
-
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
- # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
 
 
13
 
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
 
 
 
 
 
 
 
23
 
24
  def translate(audio):
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
-
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
33
 
 
 
 
 
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
 
37
  synthesised_speech = synthesise(translated_text)
38
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
- return 16000, synthesised_speech
40
-
41
 
42
- title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
- ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
50
  demo = gr.Blocks()
51
 
52
  mic_translate = gr.Interface(
53
  fn=speech_to_speech_translation,
54
- inputs=gr.Audio(source="microphone", type="filepath"),
55
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
56
  title=title,
57
  description=description,
@@ -59,14 +82,14 @@ mic_translate = gr.Interface(
59
 
60
  file_translate = gr.Interface(
61
  fn=speech_to_speech_translation,
62
- inputs=gr.Audio(source="upload", type="filepath"),
63
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
64
- examples=[["./example.wav"]],
65
  title=title,
66
  description=description,
67
  )
68
 
69
  with demo:
70
- gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
  demo.launch()
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """ML_task3.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1DfK6fjkAd9RjVx3MUGfDtAOulvEenk0E
8
+ """
9
+
10
+ !pip install gradio
11
+
12
+ !pip install datasets
13
+ !pip install transformers
14
+
15
  import gradio as gr
16
  import numpy as np
17
  import torch
18
  from datasets import load_dataset
19
 
20
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor
 
21
 
22
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
23
 
24
+ # распознавание речи
25
+ asr_pipe = pipeline("automatic-speech-recognition", model="voidful/wav2vec2-xlsr-multilingual-56", device=device)
26
+
27
+ !pip -q install sentencepiece
28
 
29
+ processor = WhisperProcessor.from_pretrained(
30
+ "openai/whisper-small")
31
 
32
+ translator_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
33
+ translator_ru = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")
34
 
35
+ from transformers import VitsModel, VitsTokenizer
 
36
 
37
+ model = VitsModel.from_pretrained("facebook/mms-tts-rus")
38
+ tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus")
39
+
40
+ def translator_mul_ru(text):
41
+
42
+ translation = translator_ru(translator_en(text)[0]['translation_text'])
43
+ return translation[0]['translation_text']
44
 
45
  def translate(audio):
46
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
47
  return outputs["text"]
48
 
 
49
  def synthesise(text):
50
+ translated_text = translator_mul_ru(text)
51
+ inputs = tokenizer(translated_text, return_tensors="pt")
52
+ input_ids = inputs["input_ids"]
53
 
54
+ with torch.no_grad():
55
+ outputs = model(input_ids)
56
+ speech = outputs["waveform"]
57
+ return speech.cpu()
58
 
59
  def speech_to_speech_translation(audio):
60
  translated_text = translate(audio)
61
+ print(translated_text)
62
  synthesised_speech = synthesise(translated_text)
63
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
64
+ return 16000, synthesised_speech[0]
 
65
 
66
+ title = "Speech-to-Speech Translation"
67
  description = """
68
+ * Выбранная ASR модель - https://huggingface.co/voidful/wav2vec2-xlsr-multilingual-56
69
+ * Перевод текста на русский с помощью модели https://huggingface.co/Helsinki-NLP/opus-mt-mul-en
70
+ * Синтез речи на русском языке с помощью модели https://huggingface.co/facebook/mms-tts-rus
 
71
  """
72
 
73
  demo = gr.Blocks()
74
 
75
  mic_translate = gr.Interface(
76
  fn=speech_to_speech_translation,
77
+ inputs=gr.Audio(sources="microphone", type="filepath"),
78
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
79
  title=title,
80
  description=description,
 
82
 
83
  file_translate = gr.Interface(
84
  fn=speech_to_speech_translation,
85
+ inputs=gr.Audio(sources="upload", type="filepath"),
86
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
 
87
  title=title,
88
  description=description,
89
  )
90
 
91
  with demo:
92
+ gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "File"])
93
 
94
  demo.launch()
95
+