Spaces:
Runtime error
Runtime error
File size: 2,540 Bytes
fca1b98 93a61c7 3ca1d70 fca1b98 0a66490 93a61c7 fca1b98 f265fa8 fca1b98 f265fa8 fca1b98 0aedcaa fca1b98 e7b5b75 0a66490 0aedcaa ab22c86 0aedcaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
import requests
import io
import os
from PIL import Image
API_URL = "https://api-inference.huggingface.co/models/Kvikontent/kviimager2.0"
api_key = os.environ.get('API_KEY')
headers = {"Authorization": f"Bearer {api_key}"}
# Define custom Exception class for better error handling
class QueryError(Exception):
pass
def query(payload):
try:
# Make sure we have valid JSON data before sending the request
assert type(payload) == dict
# Send the POST request to the API URL
response = requests.post(API_URL, headers=headers, json=payload)
# Check if the status code indicates success (HTTP Status Code 2xx)
if not str(response.status_code).startswith("2"):
raise QueryError(f"Query failed! Response status code was '{response.status_code}'")
else:
# Return the raw bytes from the response object
return response.content
except AssertionError:
print("Invalid Payload Error: Please provide a dictionary.")
except RequestException as e:
print("Request Failed: ", e)
except ConnectionError as ce:
print("Connection Error: Unable to connect to the API.", ce)
except Timeout as t:
print("Timeout Error: Request timed out while trying to reach the API.", t)
except TooManyRedirects as tmr:
print("Too Many Redirects Error: Exceeded maximum number of redirects.", tmr)
except HTTPError as he:
print("HTTP Error: Invalid HTTP response.", he)
except QueryError as qe:
print(qe)
except Exception as ex:
print("Unknown Error occurred: ", ex)
def generate_image_from_prompt(prompt_text):
image_bytes = query({"inputs": prompt_text})
img = BytesIO(image_bytes) # Convert to BytesIO stream
pil_img = Image.open(img) # Open the image using PIL library
return pil_img # Return the converted PIL image
title = "KVIImager 2.0 Demo 🎨"
description = "This app uses Hugging Face AI model to generate an image based on the provided text prompt 🖼️."
input_prompt = gr.Textbox(label="Enter Prompt 📝", placeholder="E.g. 'A peaceful garden with a small cottage'")
output_generated_image = gr.Image(label="Generated Image")
#with gr.Blocks(theme=gr.themes.Soft()) as app:
# caption = "Generate Image"
iface = gr.Interface(
fn=generate_image_from_prompt,
inputs=input_prompt,
outputs=output_generated_image,
title=title,
description=description
)
iface.launch() |