Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Union | |
import torch.nn as nn | |
from mmdet.utils import ConfigType, OptMultiConfig | |
from mmyolo.registry import MODELS | |
from .. import CSPLayerWithTwoConv | |
from ..utils import make_divisible, make_round | |
from .yolov5_pafpn import YOLOv5PAFPN | |
class YOLOv8PAFPN(YOLOv5PAFPN): | |
"""Path Aggregation Network used in YOLOv8. | |
Args: | |
in_channels (List[int]): Number of input channels per scale. | |
out_channels (int): Number of output channels (used at each scale) | |
deepen_factor (float): Depth multiplier, multiply number of | |
blocks in CSP layer by this amount. Defaults to 1.0. | |
widen_factor (float): Width multiplier, multiply number of | |
channels in each layer by this amount. Defaults to 1.0. | |
num_csp_blocks (int): Number of bottlenecks in CSPLayer. Defaults to 1. | |
freeze_all(bool): Whether to freeze the model | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to dict(type='BN', momentum=0.03, eps=0.001). | |
act_cfg (dict): Config dict for activation layer. | |
Defaults to dict(type='SiLU', inplace=True). | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
in_channels: List[int], | |
out_channels: Union[List[int], int], | |
deepen_factor: float = 1.0, | |
widen_factor: float = 1.0, | |
num_csp_blocks: int = 3, | |
freeze_all: bool = False, | |
norm_cfg: ConfigType = dict( | |
type='BN', momentum=0.03, eps=0.001), | |
act_cfg: ConfigType = dict(type='SiLU', inplace=True), | |
init_cfg: OptMultiConfig = None): | |
super().__init__( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
deepen_factor=deepen_factor, | |
widen_factor=widen_factor, | |
num_csp_blocks=num_csp_blocks, | |
freeze_all=freeze_all, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
init_cfg=init_cfg) | |
def build_reduce_layer(self, idx: int) -> nn.Module: | |
"""build reduce layer. | |
Args: | |
idx (int): layer idx. | |
Returns: | |
nn.Module: The reduce layer. | |
""" | |
return nn.Identity() | |
def build_top_down_layer(self, idx: int) -> nn.Module: | |
"""build top down layer. | |
Args: | |
idx (int): layer idx. | |
Returns: | |
nn.Module: The top down layer. | |
""" | |
return CSPLayerWithTwoConv( | |
make_divisible((self.in_channels[idx - 1] + self.in_channels[idx]), | |
self.widen_factor), | |
make_divisible(self.out_channels[idx - 1], self.widen_factor), | |
num_blocks=make_round(self.num_csp_blocks, self.deepen_factor), | |
add_identity=False, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
def build_bottom_up_layer(self, idx: int) -> nn.Module: | |
"""build bottom up layer. | |
Args: | |
idx (int): layer idx. | |
Returns: | |
nn.Module: The bottom up layer. | |
""" | |
return CSPLayerWithTwoConv( | |
make_divisible( | |
(self.out_channels[idx] + self.out_channels[idx + 1]), | |
self.widen_factor), | |
make_divisible(self.out_channels[idx + 1], self.widen_factor), | |
num_blocks=make_round(self.num_csp_blocks, self.deepen_factor), | |
add_identity=False, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |