RSPrompter / mmyolo /models /necks /yolov8_pafpn.py
KyanChen's picture
Upload 89 files
3094730
raw
history blame
3.72 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Union
import torch.nn as nn
from mmdet.utils import ConfigType, OptMultiConfig
from mmyolo.registry import MODELS
from .. import CSPLayerWithTwoConv
from ..utils import make_divisible, make_round
from .yolov5_pafpn import YOLOv5PAFPN
@MODELS.register_module()
class YOLOv8PAFPN(YOLOv5PAFPN):
"""Path Aggregation Network used in YOLOv8.
Args:
in_channels (List[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale)
deepen_factor (float): Depth multiplier, multiply number of
blocks in CSP layer by this amount. Defaults to 1.0.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
num_csp_blocks (int): Number of bottlenecks in CSPLayer. Defaults to 1.
freeze_all(bool): Whether to freeze the model
norm_cfg (dict): Config dict for normalization layer.
Defaults to dict(type='BN', momentum=0.03, eps=0.001).
act_cfg (dict): Config dict for activation layer.
Defaults to dict(type='SiLU', inplace=True).
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
in_channels: List[int],
out_channels: Union[List[int], int],
deepen_factor: float = 1.0,
widen_factor: float = 1.0,
num_csp_blocks: int = 3,
freeze_all: bool = False,
norm_cfg: ConfigType = dict(
type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
init_cfg: OptMultiConfig = None):
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
deepen_factor=deepen_factor,
widen_factor=widen_factor,
num_csp_blocks=num_csp_blocks,
freeze_all=freeze_all,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
init_cfg=init_cfg)
def build_reduce_layer(self, idx: int) -> nn.Module:
"""build reduce layer.
Args:
idx (int): layer idx.
Returns:
nn.Module: The reduce layer.
"""
return nn.Identity()
def build_top_down_layer(self, idx: int) -> nn.Module:
"""build top down layer.
Args:
idx (int): layer idx.
Returns:
nn.Module: The top down layer.
"""
return CSPLayerWithTwoConv(
make_divisible((self.in_channels[idx - 1] + self.in_channels[idx]),
self.widen_factor),
make_divisible(self.out_channels[idx - 1], self.widen_factor),
num_blocks=make_round(self.num_csp_blocks, self.deepen_factor),
add_identity=False,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def build_bottom_up_layer(self, idx: int) -> nn.Module:
"""build bottom up layer.
Args:
idx (int): layer idx.
Returns:
nn.Module: The bottom up layer.
"""
return CSPLayerWithTwoConv(
make_divisible(
(self.out_channels[idx] + self.out_channels[idx + 1]),
self.widen_factor),
make_divisible(self.out_channels[idx + 1], self.widen_factor),
num_blocks=make_round(self.num_csp_blocks, self.deepen_factor),
add_identity=False,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)