Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
from mmcv.transforms import to_tensor | |
from mmcv.transforms.base import BaseTransform | |
from mmengine.structures import InstanceData, PixelData | |
from mmdet.registry import TRANSFORMS | |
from mmdet.structures import DetDataSample | |
from mmdet.structures.bbox import BaseBoxes | |
class PackDetInputs(BaseTransform): | |
"""Pack the inputs data for the detection / semantic segmentation / | |
panoptic segmentation. | |
The ``img_meta`` item is always populated. The contents of the | |
``img_meta`` dictionary depends on ``meta_keys``. By default this includes: | |
- ``img_id``: id of the image | |
- ``img_path``: path to the image file | |
- ``ori_shape``: original shape of the image as a tuple (h, w) | |
- ``img_shape``: shape of the image input to the network as a tuple \ | |
(h, w). Note that images may be zero padded on the \ | |
bottom/right if the batch tensor is larger than this shape. | |
- ``scale_factor``: a float indicating the preprocessing scale | |
- ``flip``: a boolean indicating if image flip transform was used | |
- ``flip_direction``: the flipping direction | |
Args: | |
meta_keys (Sequence[str], optional): Meta keys to be converted to | |
``mmcv.DataContainer`` and collected in ``data[img_metas]``. | |
Default: ``('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor', 'flip', 'flip_direction')`` | |
""" | |
mapping_table = { | |
'gt_bboxes': 'bboxes', | |
'gt_bboxes_labels': 'labels', | |
'gt_masks': 'masks' | |
} | |
def __init__(self, | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor', 'flip', 'flip_direction')): | |
self.meta_keys = meta_keys | |
def transform(self, results: dict) -> dict: | |
"""Method to pack the input data. | |
Args: | |
results (dict): Result dict from the data pipeline. | |
Returns: | |
dict: | |
- 'inputs' (obj:`torch.Tensor`): The forward data of models. | |
- 'data_sample' (obj:`DetDataSample`): The annotation info of the | |
sample. | |
""" | |
packed_results = dict() | |
if 'img' in results: | |
img = results['img'] | |
if len(img.shape) < 3: | |
img = np.expand_dims(img, -1) | |
# To improve the computational speed by by 3-5 times, apply: | |
# If image is not contiguous, use | |
# `numpy.transpose()` followed by `numpy.ascontiguousarray()` | |
# If image is already contiguous, use | |
# `torch.permute()` followed by `torch.contiguous()` | |
# Refer to https://github.com/open-mmlab/mmdetection/pull/9533 | |
# for more details | |
if not img.flags.c_contiguous: | |
img = np.ascontiguousarray(img.transpose(2, 0, 1)) | |
img = to_tensor(img) | |
else: | |
img = to_tensor(img).permute(2, 0, 1).contiguous() | |
packed_results['inputs'] = img | |
if 'gt_ignore_flags' in results: | |
valid_idx = np.where(results['gt_ignore_flags'] == 0)[0] | |
ignore_idx = np.where(results['gt_ignore_flags'] == 1)[0] | |
data_sample = DetDataSample() | |
instance_data = InstanceData() | |
ignore_instance_data = InstanceData() | |
for key in self.mapping_table.keys(): | |
if key not in results: | |
continue | |
if key == 'gt_masks' or isinstance(results[key], BaseBoxes): | |
if 'gt_ignore_flags' in results: | |
instance_data[ | |
self.mapping_table[key]] = results[key][valid_idx] | |
ignore_instance_data[ | |
self.mapping_table[key]] = results[key][ignore_idx] | |
else: | |
instance_data[self.mapping_table[key]] = results[key] | |
else: | |
if 'gt_ignore_flags' in results: | |
instance_data[self.mapping_table[key]] = to_tensor( | |
results[key][valid_idx]) | |
ignore_instance_data[self.mapping_table[key]] = to_tensor( | |
results[key][ignore_idx]) | |
else: | |
instance_data[self.mapping_table[key]] = to_tensor( | |
results[key]) | |
data_sample.gt_instances = instance_data | |
data_sample.ignored_instances = ignore_instance_data | |
if 'proposals' in results: | |
proposals = InstanceData( | |
bboxes=to_tensor(results['proposals']), | |
scores=to_tensor(results['proposals_scores'])) | |
data_sample.proposals = proposals | |
if 'gt_seg_map' in results: | |
gt_sem_seg_data = dict( | |
sem_seg=to_tensor(results['gt_seg_map'][None, ...].copy())) | |
data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data) | |
img_meta = {} | |
for key in self.meta_keys: | |
assert key in results, f'`{key}` is not found in `results`, ' \ | |
f'the valid keys are {list(results)}.' | |
img_meta[key] = results[key] | |
data_sample.set_metainfo(img_meta) | |
packed_results['data_samples'] = data_sample | |
return packed_results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(meta_keys={self.meta_keys})' | |
return repr_str | |
class ToTensor: | |
"""Convert some results to :obj:`torch.Tensor` by given keys. | |
Args: | |
keys (Sequence[str]): Keys that need to be converted to Tensor. | |
""" | |
def __init__(self, keys): | |
self.keys = keys | |
def __call__(self, results): | |
"""Call function to convert data in results to :obj:`torch.Tensor`. | |
Args: | |
results (dict): Result dict contains the data to convert. | |
Returns: | |
dict: The result dict contains the data converted | |
to :obj:`torch.Tensor`. | |
""" | |
for key in self.keys: | |
results[key] = to_tensor(results[key]) | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + f'(keys={self.keys})' | |
class ImageToTensor: | |
"""Convert image to :obj:`torch.Tensor` by given keys. | |
The dimension order of input image is (H, W, C). The pipeline will convert | |
it to (C, H, W). If only 2 dimension (H, W) is given, the output would be | |
(1, H, W). | |
Args: | |
keys (Sequence[str]): Key of images to be converted to Tensor. | |
""" | |
def __init__(self, keys): | |
self.keys = keys | |
def __call__(self, results): | |
"""Call function to convert image in results to :obj:`torch.Tensor` and | |
transpose the channel order. | |
Args: | |
results (dict): Result dict contains the image data to convert. | |
Returns: | |
dict: The result dict contains the image converted | |
to :obj:`torch.Tensor` and permuted to (C, H, W) order. | |
""" | |
for key in self.keys: | |
img = results[key] | |
if len(img.shape) < 3: | |
img = np.expand_dims(img, -1) | |
results[key] = to_tensor(img).permute(2, 0, 1).contiguous() | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + f'(keys={self.keys})' | |
class Transpose: | |
"""Transpose some results by given keys. | |
Args: | |
keys (Sequence[str]): Keys of results to be transposed. | |
order (Sequence[int]): Order of transpose. | |
""" | |
def __init__(self, keys, order): | |
self.keys = keys | |
self.order = order | |
def __call__(self, results): | |
"""Call function to transpose the channel order of data in results. | |
Args: | |
results (dict): Result dict contains the data to transpose. | |
Returns: | |
dict: The result dict contains the data transposed to \ | |
``self.order``. | |
""" | |
for key in self.keys: | |
results[key] = results[key].transpose(self.order) | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + \ | |
f'(keys={self.keys}, order={self.order})' | |
class WrapFieldsToLists: | |
"""Wrap fields of the data dictionary into lists for evaluation. | |
This class can be used as a last step of a test or validation | |
pipeline for single image evaluation or inference. | |
Example: | |
>>> test_pipeline = [ | |
>>> dict(type='LoadImageFromFile'), | |
>>> dict(type='Normalize', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
to_rgb=True), | |
>>> dict(type='Pad', size_divisor=32), | |
>>> dict(type='ImageToTensor', keys=['img']), | |
>>> dict(type='Collect', keys=['img']), | |
>>> dict(type='WrapFieldsToLists') | |
>>> ] | |
""" | |
def __call__(self, results): | |
"""Call function to wrap fields into lists. | |
Args: | |
results (dict): Result dict contains the data to wrap. | |
Returns: | |
dict: The result dict where value of ``self.keys`` are wrapped \ | |
into list. | |
""" | |
# Wrap dict fields into lists | |
for key, val in results.items(): | |
results[key] = [val] | |
return results | |
def __repr__(self): | |
return f'{self.__class__.__name__}()' | |