Spaces:
Paused
Paused
import json | |
import webcolors | |
import spaces | |
import gradio as gr | |
import os.path as osp | |
from PIL import Image, ImageDraw, ImageFont | |
import torch | |
from diffusers import UNet2DConditionModel, AutoencoderKL | |
from diffusers.models.attention import BasicTransformerBlock | |
from peft import LoraConfig | |
from peft.utils import set_peft_model_state_dict | |
from transformers import PretrainedConfig | |
from diffusers import DPMSolverMultistepScheduler | |
from glyph_sdxl.utils import ( | |
parse_config, | |
UNET_CKPT_NAME, | |
huggingface_cache_dir, | |
load_byt5_and_byt5_tokenizer, | |
BYT5_MAPPER_CKPT_NAME, | |
INSERTED_ATTN_CKPT_NAME, | |
BYT5_CKPT_NAME, | |
PromptFormat, | |
) | |
from glyph_sdxl.custom_diffusers import ( | |
StableDiffusionGlyphXLPipeline, | |
CrossAttnInsertBasicTransformerBlock, | |
) | |
from glyph_sdxl.modules import T5EncoderBlockByT5Mapper | |
byt5_mapper_dict = [T5EncoderBlockByT5Mapper] | |
byt5_mapper_dict = {mapper.__name__: mapper for mapper in byt5_mapper_dict} | |
from demo.constants import MAX_TEXT_BOX | |
html = f"""<h1>Glyph-ByT5: A Customized Text Encoder for Accurate Visual Text Rendering</h1> | |
<h2><a href='https://glyph-byt5.github.io/'>Project Page</a> | <a href='https://arxiv.org/abs/2403.09622'>arXiv Paper</a> | <a href=''>Github</a> | <a href=''>Cite our work</a> if our ideas inspire you.</h2> | |
<p><b>Try some examples at the bottom of the page to get started!</b></p> | |
<p><b>Usage:</b></p> | |
<p>1. <b>Select bounding boxes</b> on the canvas on the left <b>by clicking twice</b>. </p> | |
<p>2. Click "Redo" if you want to cancel last point, "Undo" for clearing the canvas. </p> | |
<p>3. <b>Click "I've finished my layout!"</b> to start choosing specific prompts, colors and font-types. </p> | |
<p>4. Enter a <b>design prompt</b> for the background image. Optionally, you can choose to specify the design categories and tags (separated by a comma). </p> | |
<p>5. For each text box, <b>enter the text prompts in the text box</b> on the left, and <b>select colors and font-types from the drop boxes</b> on the right. </p> | |
<p>6. <b>Click on "I've finished my texts, colors and styles, generate!"</b> to start generating!. </p> | |
<style>.btn {{flex-grow: unset !important;}} </p> | |
""" | |
css = ''' | |
#color-bg{display:flex;justify-content: center;align-items: center;} | |
.color-bg-item{width: 100%; height: 32px} | |
#main_button{width:100%} | |
<style> | |
''' | |
state = 0 | |
stack = [] | |
font = ImageFont.truetype("assets/Arial.ttf", 20) | |
device = "cuda" | |
def import_model_class_from_model_name_or_path( | |
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder", | |
): | |
text_encoder_config = PretrainedConfig.from_pretrained( | |
pretrained_model_name_or_path, | |
subfolder=subfolder, | |
revision=revision, | |
) | |
model_class = text_encoder_config.architectures[0] | |
if model_class == "CLIPTextModel": | |
from transformers import CLIPTextModel | |
return CLIPTextModel | |
elif model_class == "CLIPTextModelWithProjection": | |
from transformers import CLIPTextModelWithProjection | |
return CLIPTextModelWithProjection | |
else: | |
raise ValueError(f"{model_class} is not supported.") | |
config = parse_config('configs/glyph_sdxl_albedo.py') | |
ckpt_dir = 'checkpoints/glyph-sdxl' | |
text_encoder_cls_one = import_model_class_from_model_name_or_path( | |
config.pretrained_model_name_or_path, config.revision, | |
) | |
text_encoder_cls_two = import_model_class_from_model_name_or_path( | |
config.pretrained_model_name_or_path, config.revision, subfolder="text_encoder_2", | |
) | |
text_encoder_one = text_encoder_cls_one.from_pretrained( | |
config.pretrained_model_name_or_path, subfolder="text_encoder", revision=config.revision, | |
cache_dir=huggingface_cache_dir, | |
) | |
text_encoder_two = text_encoder_cls_two.from_pretrained( | |
config.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=config.revision, | |
cache_dir=huggingface_cache_dir, | |
) | |
unet = UNet2DConditionModel.from_pretrained( | |
config.pretrained_model_name_or_path, | |
subfolder="unet", | |
revision=config.revision, | |
cache_dir=huggingface_cache_dir, | |
) | |
vae_path = ( | |
config.pretrained_model_name_or_path | |
if config.pretrained_vae_model_name_or_path is None | |
else config.pretrained_vae_model_name_or_path | |
) | |
vae = AutoencoderKL.from_pretrained( | |
vae_path, subfolder="vae" if config.pretrained_vae_model_name_or_path is None else None, | |
revision=config.revision, | |
cache_dir=huggingface_cache_dir, | |
) | |
byt5_model, byt5_tokenizer = load_byt5_and_byt5_tokenizer( | |
**config.byt5_config, | |
huggingface_cache_dir=huggingface_cache_dir, | |
) | |
inference_dtype = torch.float32 | |
if config.inference_dtype == "fp16": | |
inference_dtype = torch.float16 | |
elif config.inference_dtype == "bf16": | |
inference_dtype = torch.bfloat16 | |
inserted_new_modules_para_set = set() | |
for name, module in unet.named_modules(): | |
if isinstance(module, BasicTransformerBlock) and name in config.attn_block_to_modify: | |
parent_module = unet | |
for n in name.split(".")[:-1]: | |
parent_module = getattr(parent_module, n) | |
new_block = CrossAttnInsertBasicTransformerBlock.from_transformer_block( | |
module, | |
byt5_model.config.d_model if config.byt5_mapper_config.sdxl_channels is None else config.byt5_mapper_config.sdxl_channels, | |
) | |
new_block.requires_grad_(False) | |
for inserted_module_name, inserted_module in zip( | |
new_block.get_inserted_modules_names(), | |
new_block.get_inserted_modules() | |
): | |
inserted_module.requires_grad_(True) | |
for para_name, para in inserted_module.named_parameters(): | |
para_key = name + '.' + inserted_module_name + '.' + para_name | |
assert para_key not in inserted_new_modules_para_set | |
inserted_new_modules_para_set.add(para_key) | |
for origin_module in new_block.get_origin_modules(): | |
origin_module.to(dtype=inference_dtype) | |
parent_module.register_module(name.split(".")[-1], new_block) | |
print(f"inserted cross attn block to {name}") | |
byt5_mapper = byt5_mapper_dict[config.byt5_mapper_type]( | |
byt5_model.config, | |
**config.byt5_mapper_config, | |
) | |
unet_lora_target_modules = [ | |
"attn1.to_k", "attn1.to_q", "attn1.to_v", "attn1.to_out.0", | |
"attn2.to_k", "attn2.to_q", "attn2.to_v", "attn2.to_out.0", | |
] | |
unet_lora_config = LoraConfig( | |
r=config.unet_lora_rank, | |
lora_alpha=config.unet_lora_rank, | |
init_lora_weights="gaussian", | |
target_modules=unet_lora_target_modules, | |
) | |
unet.add_adapter(unet_lora_config) | |
unet_lora_layers_para = torch.load(osp.join(ckpt_dir, UNET_CKPT_NAME), map_location='cpu') | |
incompatible_keys = set_peft_model_state_dict(unet, unet_lora_layers_para, adapter_name="default") | |
if getattr(incompatible_keys, 'unexpected_keys', []) == []: | |
print(f"loaded unet_lora_layers_para") | |
else: | |
print(f"unet_lora_layers has unexpected_keys: {getattr(incompatible_keys, 'unexpected_keys', None)}") | |
inserted_attn_module_paras = torch.load(osp.join(ckpt_dir, INSERTED_ATTN_CKPT_NAME), map_location='cpu') | |
missing_keys, unexpected_keys = unet.load_state_dict(inserted_attn_module_paras, strict=False) | |
assert len(unexpected_keys) == 0, unexpected_keys | |
byt5_mapper_para = torch.load(osp.join(ckpt_dir, BYT5_MAPPER_CKPT_NAME), map_location='cpu') | |
byt5_mapper.load_state_dict(byt5_mapper_para) | |
byt5_model_para = torch.load(osp.join(ckpt_dir, BYT5_CKPT_NAME), map_location='cpu') | |
byt5_model.load_state_dict(byt5_model_para) | |
pipeline = StableDiffusionGlyphXLPipeline.from_pretrained( | |
config.pretrained_model_name_or_path, | |
vae=vae, | |
text_encoder=text_encoder_one, | |
text_encoder_2=text_encoder_two, | |
byt5_text_encoder=byt5_model, | |
byt5_tokenizer=byt5_tokenizer, | |
byt5_mapper=byt5_mapper, | |
unet=unet, | |
byt5_max_length=config.byt5_max_length, | |
revision=config.revision, | |
torch_dtype=inference_dtype, | |
safety_checker=None, | |
cache_dir=huggingface_cache_dir, | |
) | |
pipeline.scheduler = DPMSolverMultistepScheduler.from_pretrained( | |
config.pretrained_model_name_or_path, | |
subfolder="scheduler", | |
use_karras_sigmas=True, | |
) | |
prompt_format = PromptFormat() | |
def get_pixels( | |
box_sketch_template, | |
evt: gr.SelectData | |
): | |
global state | |
global stack | |
text_position = evt.index | |
if state == 0: | |
stack.append(text_position) | |
state = 1 | |
else: | |
x, y = stack.pop() | |
stack.append([x, y, text_position[0], text_position[1]]) | |
state = 0 | |
print(stack) | |
box_sketch_template = Image.new('RGB', (1024, 1024), (255, 255, 255)) | |
draw = ImageDraw.Draw(box_sketch_template) | |
for i, text_position in enumerate(stack): | |
if len(text_position) == 2: | |
x, y = text_position | |
r = 4 | |
leftUpPoint = (x-r, y-r) | |
rightDownPoint = (x+r, y+r) | |
text_color = (255, 0, 0) | |
draw.text((x+2, y), str(i + 1), font=font, fill=text_color) | |
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') | |
elif len(text_position) == 4: | |
x0, y0, x1, y1 = text_position | |
x0, x1 = min(x0, x1), max(x0, x1) | |
y0, y1 = min(y0, y1), max(y0, y1) | |
r = 4 | |
leftUpPoint = (x0-r, y0-r) | |
rightDownPoint = (x0+r, y0+r) | |
text_color = (255, 0, 0) | |
draw.text((x0+2, y0), str(i + 1), font=font, fill=text_color) | |
draw.rectangle((x0, y0, x1, y1), outline=(255, 0, 0)) | |
return box_sketch_template | |
def exe_redo( | |
box_sketch_template | |
): | |
global state | |
global stack | |
state = 1 - state | |
if len(stack[-1]) == 2: | |
stack = stack[:-1] | |
else: | |
x, y, _, _ = stack[-1] | |
stack = stack[:-1] + [[x, y]] | |
box_sketch_template = Image.new('RGB', (1024, 1024), (255, 255, 255)) | |
draw = ImageDraw.Draw(box_sketch_template) | |
for i, text_position in enumerate(stack): | |
if len(text_position) == 2: | |
x, y = text_position | |
r = 4 | |
leftUpPoint = (x-r, y-r) | |
rightDownPoint = (x+r, y+r) | |
text_color = (255, 0, 0) | |
draw.text((x+2, y), str(i+1), font=font, fill=text_color) | |
draw.ellipse((leftUpPoint, rightDownPoint), fill='red') | |
elif len(text_position) == 4: | |
x0, y0, x1, y1 = text_position | |
x0, x1 = min(x0, x1), max(x0, x1) | |
y0, y1 = min(y0, y1), max(y0, y1) | |
r = 4 | |
leftUpPoint = (x0-r, y0-r) | |
rightDownPoint = (x0+r, y0+r) | |
text_color = (255, 0, 0) | |
draw.text((x0+2, y0), str(i+1), font=font, fill=text_color) | |
draw.rectangle((x0,y0,x1,y1), outline=(255, 0, 0)) | |
return box_sketch_template | |
def exe_undo( | |
box_sketch_template | |
): | |
global state | |
global stack | |
state = 0 | |
stack = [] | |
box_sketch_template = Image.new('RGB', (1024, 1024), (255, 255, 255)) | |
return box_sketch_template | |
def process_box(): | |
global stack | |
global state | |
visibilities = [] | |
for _ in range(MAX_TEXT_BOX + 1): | |
visibilities.append(gr.update(visible=False)) | |
for n in range(len(stack) + 1): | |
visibilities[n] = gr.update(visible=True) | |
# return [gr.update(visible=True), binary_matrixes, *visibilities, *colors] | |
return [gr.update(visible=True), *visibilities] | |
def generate_image(bg_prompt, bg_class, bg_tags, seed, *conditions): | |
print(conditions) | |
# 0 load model to cuda | |
global pipeline | |
if config.pretrained_vae_model_name_or_path is None: | |
vae.to(device, dtype=torch.float32) | |
else: | |
vae.to(device, dtype=inference_dtype) | |
text_encoder_one.to(device, dtype=inference_dtype) | |
text_encoder_two.to(device, dtype=inference_dtype) | |
byt5_model.to(device) | |
unet.to(device, dtype=inference_dtype) | |
pipeline = pipeline.to(device) | |
# 1. parse input | |
global state | |
global stack | |
prompts = [] | |
colors = [] | |
font_type = [] | |
bboxes = [] | |
num_boxes = len(stack) if len(stack[-1]) == 4 else len(stack) - 1 | |
for i in range(num_boxes): | |
prompts.append(conditions[i]) | |
colors.append(conditions[i + MAX_TEXT_BOX]) | |
font_type.append(conditions[i + MAX_TEXT_BOX * 2]) | |
# 2. input check | |
styles = [] | |
if bg_prompt == "" or bg_prompt is None: | |
raise gr.Error("Empty background prompt!") | |
for i, (prompt, color, style) in enumerate(zip(prompts, colors, font_type)): | |
if prompt == "" or prompt is None: | |
raise gr.Error(f"Invalid prompt for text box {i + 1} !") | |
if color is None: | |
raise gr.Error(f"Invalid color for text box {i + 1} !") | |
if style is None: | |
raise gr.Error(f"Invalid style for text box {i + 1} !") | |
bboxes.append( | |
[ | |
stack[i][0] / 1024, | |
stack[i][1] / 1024, | |
(stack[i][2] - stack[i][0]) / 1024, | |
(stack[i][3] - stack[i][1]) / 1024, | |
] | |
) | |
styles.append( | |
{ | |
'color': webcolors.name_to_hex(color), | |
'font-family': style, | |
} | |
) | |
# 3. format input | |
if bg_class != "" and bg_class is not None: | |
bg_prompt = bg_class + ". " + bg_prompt | |
if bg_tags != "" and bg_tags is not None: | |
bg_prompt += " Tags: " + bg_tags | |
text_prompt = prompt_format.format_prompt(prompts, styles) | |
print(bg_prompt) | |
print(text_prompt) | |
# 4. inference | |
if seed == -1: | |
generator = torch.Generator(device=device) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
with torch.cuda.amp.autocast(): | |
image = pipeline( | |
prompt=bg_prompt, | |
text_prompt=text_prompt, | |
texts=prompts, | |
bboxes=bboxes, | |
num_inference_steps=50, | |
generator=generator, | |
text_attn_mask=None, | |
).images[0] | |
return image | |
def process_example(bg_prompt, bg_class, bg_tags, color_str, style_str, text_str, box_str, seed): | |
global stack | |
global state | |
colors = color_str.split(",") | |
styles = style_str.split(",") | |
boxes = box_str.split(";") | |
prompts = text_str.split("**********") | |
colors = [color.strip() for color in colors] | |
styles = [style.strip() for style in styles] | |
colors += [None] * (MAX_TEXT_BOX - len(colors)) | |
styles += [None] * (MAX_TEXT_BOX - len(styles)) | |
prompts += [""] * (MAX_TEXT_BOX - len(prompts)) | |
state = 0 | |
stack = [] | |
print(boxes) | |
for box in boxes: | |
print(box) | |
box = box.strip()[1:-1] | |
print(box) | |
box = box.split(",") | |
print(box) | |
x = eval(box[0].strip()) * 1024 | |
y = eval(box[1].strip()) * 1024 | |
w = eval(box[2].strip()) * 1024 | |
h = eval(box[3].strip()) * 1024 | |
stack.append([int(x), int(y), int(x + w + 0.5), int(y + h + 0.5)]) | |
visibilities = [] | |
for _ in range(MAX_TEXT_BOX + 1): | |
visibilities.append(gr.update(visible=False)) | |
for n in range(len(stack) + 1): | |
visibilities[n] = gr.update(visible=True) | |
box_sketch_template = Image.new('RGB', (1024, 1024), (255, 255, 255)) | |
draw = ImageDraw.Draw(box_sketch_template) | |
for i, text_position in enumerate(stack): | |
if len(text_position) == 2: | |
x, y = text_position | |
r = 4 | |
leftUpPoint = (x-r, y-r) | |
rightDownPoint = (x+r, y+r) | |
text_color = (255, 0, 0) | |
draw.text((x+2, y), str(i + 1), font=font, fill=text_color) | |
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') | |
elif len(text_position) == 4: | |
x0, y0, x1, y1 = text_position | |
x0, x1 = min(x0, x1), max(x0, x1) | |
y0, y1 = min(y0, y1), max(y0, y1) | |
r = 4 | |
leftUpPoint = (x0-r, y0-r) | |
rightDownPoint = (x0+r, y0+r) | |
text_color = (255, 0, 0) | |
draw.text((x0+2, y0), str(i + 1), font=font, fill=text_color) | |
draw.rectangle((x0, y0, x1, y1), outline=(255, 0, 0)) | |
return [ | |
gr.update(visible=True), box_sketch_template, seed, *visibilities, *colors, *styles, *prompts, | |
] | |
def main(): | |
# load configs | |
with open('assets/color_idx.json', 'r') as f: | |
color_idx_dict = json.load(f) | |
color_idx_list = list(color_idx_dict) | |
with open('assets/font_idx_512.json', 'r') as f: | |
font_idx_dict = json.load(f) | |
font_idx_list = list(font_idx_dict) | |
with gr.Blocks( | |
title="Glyph-ByT5: A Customized Text Encoder for Accurate Visual Text Rendering", | |
css=css, | |
) as demo: | |
gr.HTML(html) | |
with gr.Row(): | |
with gr.Column(elem_id="main-image"): | |
box_sketch_template = gr.Image( | |
value=Image.new('RGB', (1024, 1024), (255, 255, 255)), | |
sources=[], | |
interactive=False, | |
) | |
box_sketch_template.select(get_pixels, [box_sketch_template], [box_sketch_template]) | |
with gr.Row(): | |
redo = gr.Button(value='Redo - Cancel last point') | |
undo = gr.Button(value='Undo - Clear the canvas') | |
redo.click(exe_redo, [box_sketch_template], [box_sketch_template]) | |
undo.click(exe_undo, [box_sketch_template], [box_sketch_template]) | |
button_layout = gr.Button("(1) I've finished my layout!", elem_id="main_button", interactive=True) | |
prompts = [] | |
colors = [] | |
styles = [] | |
color_row = [None] * (MAX_TEXT_BOX + 1) | |
with gr.Column(visible=False) as post_box: | |
for n in range(MAX_TEXT_BOX + 1): | |
if n == 0 : | |
with gr.Row(visible=True) as color_row[n]: | |
bg_prompt = gr.Textbox(label="Design prompt for the background image", value="") | |
bg_class = gr.Textbox(label="Design type for the background image (optional)", value="") | |
bg_tags = gr.Textbox(label="Design type for the background image (optional)", value="") | |
else: | |
with gr.Row(visible=False) as color_row[n]: | |
prompts.append(gr.Textbox(label="Prompt for box "+str(n))) | |
colors.append(gr.Dropdown( | |
label="Color for box "+str(n), | |
choices=color_idx_list, | |
)) | |
styles.append(gr.Dropdown( | |
label="Font type for box "+str(n), | |
choices=font_idx_list, | |
)) | |
seed_ = gr.Slider(label="Seed", minimum=-1, maximum=999999999, value=-1, step=1) | |
button_generate = gr.Button("(2) I've finished my texts, colors and styles, generate!", elem_id="main_button", interactive=True) | |
button_layout.click(process_box, inputs=[], outputs=[post_box, *color_row], queue=False) | |
with gr.Column(): | |
output_image = gr.Image(label="Output Image", interactive=False) | |
button_generate.click(generate_image, inputs=[bg_prompt, bg_class, bg_tags, seed_, *(prompts + colors + styles)], outputs=[output_image], queue=True) | |
# examples | |
color_str = gr.Textbox(label="Color list", value="", visible=False) | |
style_str = gr.Textbox(label="Font type list", value="", visible=False) | |
box_str = gr.Textbox(label="Bbox list", value="", visible=False) | |
text_str = gr.Textbox(label="Text list", value="", visible=False) | |
gr.Examples( | |
examples=[ | |
[ | |
'The image features a small bunny rabbit sitting in a basket filled with various flowers. The basket is placed on a yellow background, creating a vibrant and cheerful scene. The flowers surrounding the rabbit come in different sizes and colors, adding to the overall visual appeal of the image. The rabbit appears to be the main focus of the scene, and its presence among the flowers creates a sense of harmony and balance.', | |
'Facebook Post', | |
'green, yellow, minimalist, easter day, happy easter day, easter, happy easter, decoration, happy, egg, spring, selebration, poster, illustration, greeting, season, design, colorful, cute, template', | |
'darkolivegreen, darkolivegreen, darkolivegreen', | |
'Gagalin-Regular, Gagalin-Regular, Brusher-Regular', | |
'MAY ALLYOUR PRAYERS BE ANSWERED**********HAVE A HAPPY**********Easter Day', | |
'[0.08267477203647416, 0.5355623100303951, 0.42857142857142855, 0.07477203647416414]; [0.08389057750759879, 0.1951367781155015, 0.38054711246200607, 0.03768996960486322]; [0.07537993920972644, 0.2601823708206687, 0.49544072948328266, 0.14650455927051673]', | |
1, | |
], | |
[ | |
'The image features a large gray elephant sitting in a field of flowers, holding a smaller elephant in its arms. The scene is quite serene and picturesque, with the two elephants being the main focus of the image. The field is filled with various flowers, creating a beautiful and vibrant backdrop for the elephants.', | |
'Cards and invitations', | |
'Light green, orange, Illustration, watercolor, playful, Baby shower invitation, baby boy shower invitation, baby boy, welcoming baby boy, koala baby shower invitation, baby shower invitation for baby shower, baby boy invitation, background, playful baby shower card, baby shower, card, newborn, born, Baby Shirt Baby Shower Invitation', | |
'peru, olive, olivedrab, peru, peru, peru', | |
'LilitaOne, Sensei-Medium, Sensei-Medium, LilitaOne, LilitaOne, LilitaOne', | |
"RSVP to +123-456-7890**********Olivia Wilson**********Baby Shower**********Please Join Us For a**********In Honoring**********23 November, 2021 | 03:00 PM Fauget Hotels", | |
'[0.07112462006079028, 0.6462006079027356, 0.3373860182370821, 0.026747720364741642]; [0.07051671732522796, 0.38662613981762917, 0.37264437689969604, 0.059574468085106386]; [0.07234042553191489, 0.15623100303951368, 0.6547112462006079, 0.12401215805471125]; [0.0662613981762918, 0.06747720364741641, 0.3981762917933131, 0.035866261398176294]; [0.07051671732522796, 0.31550151975683893, 0.22006079027355624, 0.03951367781155015]; [0.06990881458966565, 0.48328267477203646, 0.39878419452887537, 0.1094224924012158]', | |
0, | |
], | |
[ | |
'The image features a white background with a variety of colorful flowers and decorations. There are several pink flowers scattered throughout the scene, with some positioned closer to the top and others near the bottom. A blue flower can also be seen in the middle of the image. The overall composition creates a visually appealing and vibrant display.', | |
'Instagram Posts', | |
'grey, navy, purple, pink, teal, colorful, illustration, happy, celebration, post, party, year, new, event, celebrate, happy new year, new year, countdown, sparkle, firework', | |
'purple, midnightblue, black, black', | |
'Caveat-Regular, Gagalin-Regular, Quicksand-Light, Quicksand-Light', | |
'Happy New Year**********2024**********All THE BEST**********A fresh start to start a change for the better.', | |
'[0.2936170212765957, 0.2887537993920973, 0.40303951367781155, 0.07173252279635259]; [0.24984802431610942, 0.3951367781155015, 0.46200607902735563, 0.17203647416413373]; [0.3951367781155015, 0.1094224924012158, 0.2109422492401216, 0.02796352583586626]; [0.20911854103343466, 0.6127659574468085, 0.5586626139817629, 0.08085106382978724]', | |
1, | |
], | |
[ | |
'The image features a stack of pancakes with syrup and strawberries on top. The pancakes are arranged in a visually appealing manner, with some pancakes placed on top of each other. The syrup is drizzled generously over the pancakes, and the strawberries are scattered around, adding a touch of color and freshness to the scene. The overall presentation of the pancakes is appetizing and inviting.', | |
'Instagram Posts', | |
'brown, peach, grey, modern, minimalist, simple, colorful, illustration, Instagram post, instagram, post, national pancake day, international pancake day, happy pancake day, pancake day, pancake, sweet, cake, discount, sale', | |
'dimgray, white, darkolivegreen', | |
'MoreSugarRegular, Chewy-Regular, Chewy-Regular', | |
'Get 75% Discount for your first order**********Order Now**********National Pancake Day', | |
'[0.043161094224924014, 0.5963525835866261, 0.2936170212765957, 0.08389057750759879]; [0.12279635258358662, 0.79209726443769, 0.26382978723404255, 0.05167173252279635]; [0.044984802431610946, 0.09787234042553192, 0.4413373860182371, 0.4158054711246201]', | |
1, | |
] | |
], | |
inputs=[ | |
bg_prompt, | |
bg_class, | |
bg_tags, | |
color_str, | |
style_str, | |
text_str, | |
box_str, | |
seed_, | |
], | |
outputs=[post_box, box_sketch_template, seed_, *color_row, *colors, *styles, *prompts], | |
fn=process_example, | |
run_on_click=True, | |
label='Examples', | |
) | |
demo.queue() | |
demo.launch() | |
if __name__ == "__main__": | |
main() | |