Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
from pathlib import Path | |
import torch | |
from .. import DEVICE, MODEL_REPO_ID, logger | |
from ..utils.base_model import BaseModel | |
gim_path = Path(__file__).parents[2] / "third_party/gim" | |
sys.path.append(str(gim_path)) | |
def load_model(weight_name, checkpoints_path): | |
# load model | |
model = None | |
detector = None | |
if weight_name == "gim_dkm": | |
from networks.dkm.models.model_zoo.DKMv3 import DKMv3 | |
model = DKMv3(weights=None, h=672, w=896) | |
elif weight_name == "gim_loftr": | |
from networks.loftr.config import get_cfg_defaults | |
from networks.loftr.loftr import LoFTR | |
from networks.loftr.misc import lower_config | |
model = LoFTR(lower_config(get_cfg_defaults())["loftr"]) | |
elif weight_name == "gim_lightglue": | |
from networks.lightglue.models.matchers.lightglue import LightGlue | |
from networks.lightglue.superpoint import SuperPoint | |
detector = SuperPoint( | |
{ | |
"max_num_keypoints": 2048, | |
"force_num_keypoints": True, | |
"detection_threshold": 0.0, | |
"nms_radius": 3, | |
"trainable": False, | |
} | |
) | |
model = LightGlue( | |
{ | |
"filter_threshold": 0.1, | |
"flash": False, | |
"checkpointed": True, | |
} | |
) | |
# load state dict | |
if weight_name == "gim_dkm": | |
state_dict = torch.load(checkpoints_path, map_location="cpu") | |
if "state_dict" in state_dict.keys(): | |
state_dict = state_dict["state_dict"] | |
for k in list(state_dict.keys()): | |
if k.startswith("model."): | |
state_dict[k.replace("model.", "", 1)] = state_dict.pop(k) | |
if "encoder.net.fc" in k: | |
state_dict.pop(k) | |
model.load_state_dict(state_dict) | |
elif weight_name == "gim_loftr": | |
state_dict = torch.load(checkpoints_path, map_location="cpu") | |
if "state_dict" in state_dict.keys(): | |
state_dict = state_dict["state_dict"] | |
model.load_state_dict(state_dict) | |
elif weight_name == "gim_lightglue": | |
state_dict = torch.load(checkpoints_path, map_location="cpu") | |
if "state_dict" in state_dict.keys(): | |
state_dict = state_dict["state_dict"] | |
for k in list(state_dict.keys()): | |
if k.startswith("model."): | |
state_dict.pop(k) | |
if k.startswith("superpoint."): | |
state_dict[k.replace("superpoint.", "", 1)] = state_dict.pop(k) | |
detector.load_state_dict(state_dict) | |
state_dict = torch.load(checkpoints_path, map_location="cpu") | |
if "state_dict" in state_dict.keys(): | |
state_dict = state_dict["state_dict"] | |
for k in list(state_dict.keys()): | |
if k.startswith("superpoint."): | |
state_dict.pop(k) | |
if k.startswith("model."): | |
state_dict[k.replace("model.", "", 1)] = state_dict.pop(k) | |
model.load_state_dict(state_dict) | |
# eval mode | |
if detector is not None: | |
detector = detector.eval().to(DEVICE) | |
model = model.eval().to(DEVICE) | |
return model | |
class GIM(BaseModel): | |
default_conf = { | |
"match_threshold": 0.2, | |
"checkpoint_dir": gim_path / "weights", | |
"weights": "gim_dkm", | |
} | |
required_inputs = [ | |
"image0", | |
"image1", | |
] | |
ckpt_name_dict = { | |
"gim_dkm": "gim_dkm_100h.ckpt", | |
"gim_loftr": "gim_loftr_50h.ckpt", | |
"gim_lightglue": "gim_lightglue_100h.ckpt", | |
} | |
def _init(self, conf): | |
ckpt_name = self.ckpt_name_dict[conf["weights"]] | |
model_path = self._download_model( | |
repo_id=MODEL_REPO_ID, | |
filename="{}/{}".format(Path(__file__).stem, ckpt_name), | |
) | |
self.aspect_ratio = 896 / 672 | |
model = load_model(conf["weights"], model_path) | |
self.net = model | |
logger.info("Loaded GIM model") | |
def pad_image(self, image, aspect_ratio): | |
new_width = max(image.shape[3], int(image.shape[2] * aspect_ratio)) | |
new_height = max(image.shape[2], int(image.shape[3] / aspect_ratio)) | |
pad_width = new_width - image.shape[3] | |
pad_height = new_height - image.shape[2] | |
return torch.nn.functional.pad( | |
image, | |
( | |
pad_width // 2, | |
pad_width - pad_width // 2, | |
pad_height // 2, | |
pad_height - pad_height // 2, | |
), | |
) | |
def rescale_kpts(self, sparse_matches, shape0, shape1): | |
kpts0 = torch.stack( | |
( | |
shape0[1] * (sparse_matches[:, 0] + 1) / 2, | |
shape0[0] * (sparse_matches[:, 1] + 1) / 2, | |
), | |
dim=-1, | |
) | |
kpts1 = torch.stack( | |
( | |
shape1[1] * (sparse_matches[:, 2] + 1) / 2, | |
shape1[0] * (sparse_matches[:, 3] + 1) / 2, | |
), | |
dim=-1, | |
) | |
return kpts0, kpts1 | |
def compute_mask(self, kpts0, kpts1, orig_shape0, orig_shape1): | |
mask = ( | |
(kpts0[:, 0] > 0) | |
& (kpts0[:, 1] > 0) | |
& (kpts1[:, 0] > 0) | |
& (kpts1[:, 1] > 0) | |
) | |
mask &= ( | |
(kpts0[:, 0] <= (orig_shape0[1] - 1)) | |
& (kpts1[:, 0] <= (orig_shape1[1] - 1)) | |
& (kpts0[:, 1] <= (orig_shape0[0] - 1)) | |
& (kpts1[:, 1] <= (orig_shape1[0] - 1)) | |
) | |
return mask | |
def _forward(self, data): | |
# TODO: only support dkm+gim | |
image0, image1 = ( | |
self.pad_image(data["image0"], self.aspect_ratio), | |
self.pad_image(data["image1"], self.aspect_ratio), | |
) | |
dense_matches, dense_certainty = self.net.match(image0, image1) | |
sparse_matches, mconf = self.net.sample( | |
dense_matches, dense_certainty, self.conf["max_keypoints"] | |
) | |
kpts0, kpts1 = self.rescale_kpts( | |
sparse_matches, image0.shape[-2:], image1.shape[-2:] | |
) | |
mask = self.compute_mask( | |
kpts0, kpts1, data["image0"].shape[-2:], data["image1"].shape[-2:] | |
) | |
b_ids, i_ids = torch.where(mconf[None]) | |
pred = { | |
"keypoints0": kpts0[i_ids], | |
"keypoints1": kpts1[i_ids], | |
"confidence": mconf[i_ids], | |
"batch_indexes": b_ids, | |
} | |
scores, b_ids = pred["confidence"], pred["batch_indexes"] | |
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"] | |
pred["confidence"], pred["batch_indexes"] = scores[mask], b_ids[mask] | |
pred["keypoints0"], pred["keypoints1"] = kpts0[mask], kpts1[mask] | |
out = { | |
"keypoints0": pred["keypoints0"], | |
"keypoints1": pred["keypoints1"], | |
} | |
return out | |