Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
from pathlib import Path | |
from ... import ( | |
extract_features, | |
localize_sfm, | |
logger, | |
match_features, | |
pairs_from_covisibility, | |
pairs_from_retrieval, | |
triangulation, | |
) | |
from .utils import create_query_list_with_intrinsics, evaluate, scale_sfm_images | |
SCENES = ["KingsCollege", "OldHospital", "ShopFacade", "StMarysChurch", "GreatCourt"] | |
def run_scene(images, gt_dir, outputs, results, num_covis, num_loc): | |
ref_sfm_sift = gt_dir / "model_train" | |
test_list = gt_dir / "list_query.txt" | |
outputs.mkdir(exist_ok=True, parents=True) | |
ref_sfm = outputs / "sfm_superpoint+superglue" | |
ref_sfm_scaled = outputs / "sfm_sift_scaled" | |
query_list = outputs / "query_list_with_intrinsics.txt" | |
sfm_pairs = outputs / f"pairs-db-covis{num_covis}.txt" | |
loc_pairs = outputs / f"pairs-query-netvlad{num_loc}.txt" | |
feature_conf = { | |
"output": "feats-superpoint-n4096-r1024", | |
"model": { | |
"name": "superpoint", | |
"nms_radius": 3, | |
"max_keypoints": 4096, | |
}, | |
"preprocessing": { | |
"grayscale": True, | |
"resize_max": 1024, | |
}, | |
} | |
matcher_conf = match_features.confs["superglue"] | |
retrieval_conf = extract_features.confs["netvlad"] | |
create_query_list_with_intrinsics( | |
gt_dir / "empty_all", query_list, test_list, ext=".txt", image_dir=images | |
) | |
with open(test_list, "r") as f: | |
query_seqs = {q.split("/")[0] for q in f.read().rstrip().split("\n")} | |
global_descriptors = extract_features.main(retrieval_conf, images, outputs) | |
pairs_from_retrieval.main( | |
global_descriptors, | |
loc_pairs, | |
num_loc, | |
db_model=ref_sfm_sift, | |
query_prefix=query_seqs, | |
) | |
features = extract_features.main(feature_conf, images, outputs, as_half=True) | |
pairs_from_covisibility.main(ref_sfm_sift, sfm_pairs, num_matched=num_covis) | |
sfm_matches = match_features.main( | |
matcher_conf, sfm_pairs, feature_conf["output"], outputs | |
) | |
scale_sfm_images(ref_sfm_sift, ref_sfm_scaled, images) | |
triangulation.main( | |
ref_sfm, ref_sfm_scaled, images, sfm_pairs, features, sfm_matches | |
) | |
loc_matches = match_features.main( | |
matcher_conf, loc_pairs, feature_conf["output"], outputs | |
) | |
localize_sfm.main( | |
ref_sfm, | |
query_list, | |
loc_pairs, | |
features, | |
loc_matches, | |
results, | |
covisibility_clustering=False, | |
prepend_camera_name=True, | |
) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--scenes", default=SCENES, choices=SCENES, nargs="+") | |
parser.add_argument("--overwrite", action="store_true") | |
parser.add_argument( | |
"--dataset", | |
type=Path, | |
default="datasets/cambridge", | |
help="Path to the dataset, default: %(default)s", | |
) | |
parser.add_argument( | |
"--outputs", | |
type=Path, | |
default="outputs/cambridge", | |
help="Path to the output directory, default: %(default)s", | |
) | |
parser.add_argument( | |
"--num_covis", | |
type=int, | |
default=20, | |
help="Number of image pairs for SfM, default: %(default)s", | |
) | |
parser.add_argument( | |
"--num_loc", | |
type=int, | |
default=10, | |
help="Number of image pairs for loc, default: %(default)s", | |
) | |
args = parser.parse_args() | |
gt_dirs = args.dataset / "CambridgeLandmarks_Colmap_Retriangulated_1024px" | |
all_results = {} | |
for scene in args.scenes: | |
logger.info(f'Working on scene "{scene}".') | |
results = args.outputs / scene / "results.txt" | |
if args.overwrite or not results.exists(): | |
run_scene( | |
args.dataset / scene, | |
gt_dirs / scene, | |
args.outputs / scene, | |
results, | |
args.num_covis, | |
args.num_loc, | |
) | |
all_results[scene] = results | |
for scene in args.scenes: | |
logger.info(f'Evaluate scene "{scene}".') | |
evaluate( | |
gt_dirs / scene / "empty_all", | |
all_results[scene], | |
gt_dirs / scene / "list_query.txt", | |
ext=".txt", | |
) | |