Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2018, ETH Zurich and UNC Chapel Hill. | |
# All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# | |
# * Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# | |
# * Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in the | |
# documentation and/or other materials provided with the distribution. | |
# | |
# * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of | |
# its contributors may be used to endorse or promote products derived | |
# from this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE | |
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
# POSSIBILITY OF SUCH DAMAGE. | |
# | |
# Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de) | |
# This script is based on an original implementation by True Price. | |
import sqlite3 | |
import sys | |
import numpy as np | |
IS_PYTHON3 = sys.version_info[0] >= 3 | |
MAX_IMAGE_ID = 2**31 - 1 | |
CREATE_CAMERAS_TABLE = """CREATE TABLE IF NOT EXISTS cameras ( | |
camera_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, | |
model INTEGER NOT NULL, | |
width INTEGER NOT NULL, | |
height INTEGER NOT NULL, | |
params BLOB, | |
prior_focal_length INTEGER NOT NULL)""" | |
CREATE_DESCRIPTORS_TABLE = """CREATE TABLE IF NOT EXISTS descriptors ( | |
image_id INTEGER PRIMARY KEY NOT NULL, | |
rows INTEGER NOT NULL, | |
cols INTEGER NOT NULL, | |
data BLOB, | |
FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE)""" | |
CREATE_IMAGES_TABLE = """CREATE TABLE IF NOT EXISTS images ( | |
image_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, | |
name TEXT NOT NULL UNIQUE, | |
camera_id INTEGER NOT NULL, | |
prior_qw REAL, | |
prior_qx REAL, | |
prior_qy REAL, | |
prior_qz REAL, | |
prior_tx REAL, | |
prior_ty REAL, | |
prior_tz REAL, | |
CONSTRAINT image_id_check CHECK(image_id >= 0 and image_id < {}), | |
FOREIGN KEY(camera_id) REFERENCES cameras(camera_id)) | |
""".format(MAX_IMAGE_ID) | |
CREATE_TWO_VIEW_GEOMETRIES_TABLE = """ | |
CREATE TABLE IF NOT EXISTS two_view_geometries ( | |
pair_id INTEGER PRIMARY KEY NOT NULL, | |
rows INTEGER NOT NULL, | |
cols INTEGER NOT NULL, | |
data BLOB, | |
config INTEGER NOT NULL, | |
F BLOB, | |
E BLOB, | |
H BLOB, | |
qvec BLOB, | |
tvec BLOB) | |
""" | |
CREATE_KEYPOINTS_TABLE = """CREATE TABLE IF NOT EXISTS keypoints ( | |
image_id INTEGER PRIMARY KEY NOT NULL, | |
rows INTEGER NOT NULL, | |
cols INTEGER NOT NULL, | |
data BLOB, | |
FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE) | |
""" | |
CREATE_MATCHES_TABLE = """CREATE TABLE IF NOT EXISTS matches ( | |
pair_id INTEGER PRIMARY KEY NOT NULL, | |
rows INTEGER NOT NULL, | |
cols INTEGER NOT NULL, | |
data BLOB)""" | |
CREATE_NAME_INDEX = "CREATE UNIQUE INDEX IF NOT EXISTS index_name ON images(name)" | |
CREATE_ALL = "; ".join( | |
[ | |
CREATE_CAMERAS_TABLE, | |
CREATE_IMAGES_TABLE, | |
CREATE_KEYPOINTS_TABLE, | |
CREATE_DESCRIPTORS_TABLE, | |
CREATE_MATCHES_TABLE, | |
CREATE_TWO_VIEW_GEOMETRIES_TABLE, | |
CREATE_NAME_INDEX, | |
] | |
) | |
def image_ids_to_pair_id(image_id1, image_id2): | |
if image_id1 > image_id2: | |
image_id1, image_id2 = image_id2, image_id1 | |
return image_id1 * MAX_IMAGE_ID + image_id2 | |
def pair_id_to_image_ids(pair_id): | |
image_id2 = pair_id % MAX_IMAGE_ID | |
image_id1 = (pair_id - image_id2) / MAX_IMAGE_ID | |
return image_id1, image_id2 | |
def array_to_blob(array): | |
if IS_PYTHON3: | |
return array.tobytes() | |
else: | |
return np.getbuffer(array) | |
def blob_to_array(blob, dtype, shape=(-1,)): | |
if IS_PYTHON3: | |
return np.fromstring(blob, dtype=dtype).reshape(*shape) | |
else: | |
return np.frombuffer(blob, dtype=dtype).reshape(*shape) | |
class COLMAPDatabase(sqlite3.Connection): | |
def connect(database_path): | |
return sqlite3.connect(str(database_path), factory=COLMAPDatabase) | |
def __init__(self, *args, **kwargs): | |
super(COLMAPDatabase, self).__init__(*args, **kwargs) | |
self.create_tables = lambda: self.executescript(CREATE_ALL) | |
self.create_cameras_table = lambda: self.executescript(CREATE_CAMERAS_TABLE) | |
self.create_descriptors_table = lambda: self.executescript( | |
CREATE_DESCRIPTORS_TABLE | |
) | |
self.create_images_table = lambda: self.executescript(CREATE_IMAGES_TABLE) | |
self.create_two_view_geometries_table = lambda: self.executescript( | |
CREATE_TWO_VIEW_GEOMETRIES_TABLE | |
) | |
self.create_keypoints_table = lambda: self.executescript(CREATE_KEYPOINTS_TABLE) | |
self.create_matches_table = lambda: self.executescript(CREATE_MATCHES_TABLE) | |
self.create_name_index = lambda: self.executescript(CREATE_NAME_INDEX) | |
def add_camera( | |
self, model, width, height, params, prior_focal_length=False, camera_id=None | |
): | |
params = np.asarray(params, np.float64) | |
cursor = self.execute( | |
"INSERT INTO cameras VALUES (?, ?, ?, ?, ?, ?)", | |
( | |
camera_id, | |
model, | |
width, | |
height, | |
array_to_blob(params), | |
prior_focal_length, | |
), | |
) | |
return cursor.lastrowid | |
def add_image( | |
self, | |
name, | |
camera_id, | |
prior_q=np.full(4, np.NaN), | |
prior_t=np.full(3, np.NaN), | |
image_id=None, | |
): | |
cursor = self.execute( | |
"INSERT INTO images VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", | |
( | |
image_id, | |
name, | |
camera_id, | |
prior_q[0], | |
prior_q[1], | |
prior_q[2], | |
prior_q[3], | |
prior_t[0], | |
prior_t[1], | |
prior_t[2], | |
), | |
) | |
return cursor.lastrowid | |
def add_keypoints(self, image_id, keypoints): | |
assert len(keypoints.shape) == 2 | |
assert keypoints.shape[1] in [2, 4, 6] | |
keypoints = np.asarray(keypoints, np.float32) | |
self.execute( | |
"INSERT INTO keypoints VALUES (?, ?, ?, ?)", | |
(image_id,) + keypoints.shape + (array_to_blob(keypoints),), | |
) | |
def add_descriptors(self, image_id, descriptors): | |
descriptors = np.ascontiguousarray(descriptors, np.uint8) | |
self.execute( | |
"INSERT INTO descriptors VALUES (?, ?, ?, ?)", | |
(image_id,) + descriptors.shape + (array_to_blob(descriptors),), | |
) | |
def add_matches(self, image_id1, image_id2, matches): | |
assert len(matches.shape) == 2 | |
assert matches.shape[1] == 2 | |
if image_id1 > image_id2: | |
matches = matches[:, ::-1] | |
pair_id = image_ids_to_pair_id(image_id1, image_id2) | |
matches = np.asarray(matches, np.uint32) | |
self.execute( | |
"INSERT INTO matches VALUES (?, ?, ?, ?)", | |
(pair_id,) + matches.shape + (array_to_blob(matches),), | |
) | |
def add_two_view_geometry( | |
self, | |
image_id1, | |
image_id2, | |
matches, | |
F=np.eye(3), | |
E=np.eye(3), | |
H=np.eye(3), | |
qvec=np.array([1.0, 0.0, 0.0, 0.0]), | |
tvec=np.zeros(3), | |
config=2, | |
): | |
assert len(matches.shape) == 2 | |
assert matches.shape[1] == 2 | |
if image_id1 > image_id2: | |
matches = matches[:, ::-1] | |
pair_id = image_ids_to_pair_id(image_id1, image_id2) | |
matches = np.asarray(matches, np.uint32) | |
F = np.asarray(F, dtype=np.float64) | |
E = np.asarray(E, dtype=np.float64) | |
H = np.asarray(H, dtype=np.float64) | |
qvec = np.asarray(qvec, dtype=np.float64) | |
tvec = np.asarray(tvec, dtype=np.float64) | |
self.execute( | |
"INSERT INTO two_view_geometries VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", | |
(pair_id,) | |
+ matches.shape | |
+ ( | |
array_to_blob(matches), | |
config, | |
array_to_blob(F), | |
array_to_blob(E), | |
array_to_blob(H), | |
array_to_blob(qvec), | |
array_to_blob(tvec), | |
), | |
) | |
def example_usage(): | |
import os | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--database_path", default="database.db") | |
args = parser.parse_args() | |
if os.path.exists(args.database_path): | |
print("ERROR: database path already exists -- will not modify it.") | |
return | |
# Open the database. | |
db = COLMAPDatabase.connect(args.database_path) | |
# For convenience, try creating all the tables upfront. | |
db.create_tables() | |
# Create dummy cameras. | |
model1, width1, height1, params1 = ( | |
0, | |
1024, | |
768, | |
np.array((1024.0, 512.0, 384.0)), | |
) | |
model2, width2, height2, params2 = ( | |
2, | |
1024, | |
768, | |
np.array((1024.0, 512.0, 384.0, 0.1)), | |
) | |
camera_id1 = db.add_camera(model1, width1, height1, params1) | |
camera_id2 = db.add_camera(model2, width2, height2, params2) | |
# Create dummy images. | |
image_id1 = db.add_image("image1.png", camera_id1) | |
image_id2 = db.add_image("image2.png", camera_id1) | |
image_id3 = db.add_image("image3.png", camera_id2) | |
image_id4 = db.add_image("image4.png", camera_id2) | |
# Create dummy keypoints. | |
# | |
# Note that COLMAP supports: | |
# - 2D keypoints: (x, y) | |
# - 4D keypoints: (x, y, theta, scale) | |
# - 6D affine keypoints: (x, y, a_11, a_12, a_21, a_22) | |
num_keypoints = 1000 | |
keypoints1 = np.random.rand(num_keypoints, 2) * (width1, height1) | |
keypoints2 = np.random.rand(num_keypoints, 2) * (width1, height1) | |
keypoints3 = np.random.rand(num_keypoints, 2) * (width2, height2) | |
keypoints4 = np.random.rand(num_keypoints, 2) * (width2, height2) | |
db.add_keypoints(image_id1, keypoints1) | |
db.add_keypoints(image_id2, keypoints2) | |
db.add_keypoints(image_id3, keypoints3) | |
db.add_keypoints(image_id4, keypoints4) | |
# Create dummy matches. | |
M = 50 | |
matches12 = np.random.randint(num_keypoints, size=(M, 2)) | |
matches23 = np.random.randint(num_keypoints, size=(M, 2)) | |
matches34 = np.random.randint(num_keypoints, size=(M, 2)) | |
db.add_matches(image_id1, image_id2, matches12) | |
db.add_matches(image_id2, image_id3, matches23) | |
db.add_matches(image_id3, image_id4, matches34) | |
# Commit the data to the file. | |
db.commit() | |
# Read and check cameras. | |
rows = db.execute("SELECT * FROM cameras") | |
camera_id, model, width, height, params, prior = next(rows) | |
params = blob_to_array(params, np.float64) | |
assert camera_id == camera_id1 | |
assert model == model1 and width == width1 and height == height1 | |
assert np.allclose(params, params1) | |
camera_id, model, width, height, params, prior = next(rows) | |
params = blob_to_array(params, np.float64) | |
assert camera_id == camera_id2 | |
assert model == model2 and width == width2 and height == height2 | |
assert np.allclose(params, params2) | |
# Read and check keypoints. | |
keypoints = dict( | |
(image_id, blob_to_array(data, np.float32, (-1, 2))) | |
for image_id, data in db.execute("SELECT image_id, data FROM keypoints") | |
) | |
assert np.allclose(keypoints[image_id1], keypoints1) | |
assert np.allclose(keypoints[image_id2], keypoints2) | |
assert np.allclose(keypoints[image_id3], keypoints3) | |
assert np.allclose(keypoints[image_id4], keypoints4) | |
# Read and check matches. | |
pair_ids = [ # noqa: F841 | |
image_ids_to_pair_id(*pair) | |
for pair in ( | |
(image_id1, image_id2), | |
(image_id2, image_id3), | |
(image_id3, image_id4), | |
) | |
] | |
matches = dict( | |
(pair_id_to_image_ids(pair_id), blob_to_array(data, np.uint32, (-1, 2))) | |
for pair_id, data in db.execute("SELECT pair_id, data FROM matches") | |
) | |
assert np.all(matches[(image_id1, image_id2)] == matches12) | |
assert np.all(matches[(image_id2, image_id3)] == matches23) | |
assert np.all(matches[(image_id3, image_id4)] == matches34) | |
# Clean up. | |
db.close() | |
if os.path.exists(args.database_path): | |
os.remove(args.database_path) | |
if __name__ == "__main__": | |
example_usage() | |