|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel, PeftConfig |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
base_model_repo = "unsloth/Llama-3.2-3B-Instruct-GGUF" |
|
adapter_repo = "Mat17892/llama_lora_gguf" |
|
|
|
|
|
print("Downloading base model...") |
|
base_model_path = hf_hub_download(repo_id=base_model_repo, filename="Llama-3.2-3B-Instruct-Q8_0.gguf") |
|
|
|
print("Downloading LoRA adapter...") |
|
lora_adapter_path = hf_hub_download(repo_id=adapter_repo, filename="llama_lora_adapter.gguf") |
|
|
|
|
|
print("Loading base model and tokenizer...") |
|
tokenizer = AutoTokenizer.from_pretrained(base_model_path) |
|
base_model = AutoModelForCausalLM.from_pretrained(base_model_path) |
|
|
|
|
|
print("Loading LoRA adapter...") |
|
config = PeftConfig.from_pretrained(lora_adapter_path) |
|
model = PeftModel.from_pretrained(base_model, lora_adapter_path) |
|
|
|
print("Model is ready!") |
|
|
|
|
|
def chat_with_model(user_input, chat_history): |
|
""" |
|
Generate a response from the model using the chat history and user input. |
|
""" |
|
|
|
prompt = "" |
|
for user, ai in chat_history: |
|
prompt += f"User: {user}\nAI: {ai}\n" |
|
prompt += f"User: {user_input}\nAI:" |
|
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
outputs = model.generate(**inputs, max_new_tokens=200, pad_token_id=tokenizer.eos_token_id) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
chat_history.append((user_input, response)) |
|
return chat_history, chat_history |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# 🦙 LLaMA Chatbot with Base Model and LoRA Adapter") |
|
chatbot = gr.Chatbot(label="Chat with the Model") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
user_input = gr.Textbox(label="Your Message", placeholder="Type a message...") |
|
with gr.Column(scale=1): |
|
submit_btn = gr.Button("Send") |
|
|
|
chat_history = gr.State([]) |
|
|
|
|
|
submit_btn.click( |
|
chat_with_model, |
|
inputs=[user_input, chat_history], |
|
outputs=[chatbot, chat_history], |
|
show_progress=True, |
|
) |
|
|
|
|
|
demo.launch() |
|
|