Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import cv2 | |
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
import pandas as pd | |
# FFT processing functions | |
def apply_fft(image): | |
"""Apply FFT to each channel of the image and return shifted FFT channels.""" | |
fft_channels = [] | |
for channel in cv2.split(image): | |
fft = np.fft.fft2(channel) | |
fft_shifted = np.fft.fftshift(fft) | |
fft_channels.append(fft_shifted) | |
return fft_channels | |
def filter_fft_percentage(fft_channels, percentage): | |
"""Filter FFT channels to keep top percentage of magnitudes.""" | |
filtered_fft = [] | |
for fft_data in fft_channels: | |
magnitude = np.abs(fft_data) | |
sorted_mag = np.sort(magnitude.flatten())[::-1] | |
num_keep = int(len(sorted_mag) * percentage / 100) | |
threshold = sorted_mag[num_keep - 1] if num_keep > 0 else 0 | |
mask = magnitude >= threshold | |
filtered_fft.append(fft_data * mask) | |
return filtered_fft | |
def inverse_fft(filtered_fft): | |
"""Reconstruct image from filtered FFT channels.""" | |
reconstructed_channels = [] | |
for fft_data in filtered_fft: | |
fft_ishift = np.fft.ifftshift(fft_data) | |
img_reconstructed = np.fft.ifft2(fft_ishift).real | |
img_normalized = cv2.normalize(img_reconstructed, None, 0, 255, cv2.NORM_MINMAX) | |
reconstructed_channels.append(img_normalized.astype(np.uint8)) | |
return cv2.merge(reconstructed_channels) | |
def create_3d_plot(fft_channels, downsample_factor=1): | |
"""Create interactive 3D surface plots using Plotly.""" | |
fig = make_subplots( | |
rows=3, cols=2, | |
specs=[[{'type': 'scene'}, {'type': 'scene'}], | |
[{'type': 'scene'}, {'type': 'scene'}], | |
[{'type': 'scene'}, {'type': 'scene'}]], | |
subplot_titles=( | |
'Blue - Magnitude', 'Blue - Phase', | |
'Green - Magnitude', 'Green - Phase', | |
'Red - Magnitude', 'Red - Phase' | |
) | |
) | |
channel_names = ['Blue', 'Green', 'Red'] | |
for i, fft_data in enumerate(fft_channels): | |
# Downsample data for better performance | |
fft_down = fft_data[::downsample_factor, ::downsample_factor] | |
magnitude = np.abs(fft_down) | |
phase = np.angle(fft_down) | |
# Create grid coordinates | |
rows, cols = magnitude.shape | |
x = np.linspace(-cols//2, cols//2, cols) | |
y = np.linspace(-rows//2, rows//2, rows) | |
X, Y = np.meshgrid(x, y) | |
# Magnitude plot | |
fig.add_trace( | |
go.Surface(x=X, y=Y, z=magnitude, colorscale='Viridis', showscale=False), | |
row=i+1, col=1 | |
) | |
# Phase plot | |
fig.add_trace( | |
go.Surface(x=X, y=Y, z=phase, colorscale='Inferno', showscale=False), | |
row=i+1, col=2 | |
) | |
# Update layout for better visualization | |
fig.update_layout( | |
height=1500, | |
width=1200, | |
margin=dict(l=0, r=0, b=0, t=30), | |
scene_camera=dict(eye=dict(x=1.5, y=1.5, z=0.5)), | |
scene=dict( | |
xaxis=dict(title='Frequency X'), | |
yaxis=dict(title='Frequency Y'), | |
zaxis=dict(title='Magnitude/Phase') | |
) | |
) | |
return fig | |
# Streamlit UI | |
st.set_page_config(layout="wide") | |
st.title("Interactive Frequency Domain Analysis") | |
# Introduction Text | |
st.subheader("Introduction to FFT and Image Filtering") | |
st.write( | |
"""Fast Fourier Transform (FFT) is a technique to transform an image from the spatial domain to the frequency domain. | |
In this domain, each frequency represents a different aspect of the image's texture and details. | |
By filtering out certain frequencies, you can modify the image's appearance, enhancing or suppressing certain features.""" | |
) | |
uploaded_file = st.file_uploader("Upload an image", type=['png', 'jpg', 'jpeg']) | |
if uploaded_file is not None: | |
# Read and display original image | |
file_bytes = np.frombuffer(uploaded_file.getvalue(), np.uint8) | |
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) | |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
st.image(image_rgb, caption="Original Image", use_column_width=True) | |
# Process FFT and store in session state | |
if 'fft_channels' not in st.session_state: | |
st.session_state.fft_channels = apply_fft(image) | |
# Create a form to submit frequency percentage selection | |
with st.form(key='fft_form'): | |
percentage = st.slider( | |
"Percentage of frequencies to retain:", | |
min_value=0.1, max_value=100.0, value=10.0, step=0.1, | |
help="Adjust the slider to select what portion of frequency components to keep. Lower values blur the image." | |
) | |
submit_button = st.form_submit_button(label="Apply Filter") | |
if submit_button: | |
# Apply filtering and reconstruct image | |
filtered_fft = filter_fft_percentage(st.session_state.fft_channels, percentage) | |
reconstructed = inverse_fft(filtered_fft) | |
reconstructed_rgb = cv2.cvtColor(reconstructed, cv2.COLOR_BGR2RGB) | |
st.image(reconstructed_rgb, caption="Reconstructed Image", use_column_width=True) | |
# Display FFT Data in Table Format | |
st.subheader("Frequency Data of Each Channel") | |
fft_data_dict = {} | |
for i, channel_name in enumerate(['Blue', 'Green', 'Red']): | |
magnitude = np.abs(st.session_state.fft_channels[i]) | |
phase = np.angle(st.session_state.fft_channels[i]) | |
fft_data_dict[channel_name] = {'Magnitude': magnitude, 'Phase': phase} | |
# Create DataFrames for each channel's FFT data | |
for channel_name, data in fft_data_dict.items(): | |
st.write(f"### {channel_name} Channel FFT Data") | |
magnitude_df = pd.DataFrame(data['Magnitude']) | |
phase_df = pd.DataFrame(data['Phase']) | |
st.write("#### Magnitude Data:") | |
st.dataframe(magnitude_df.head(10)) # Display first 10 rows for brevity | |
st.write("#### Phase Data:") | |
st.dataframe(phase_df.head(10)) # Display first 10 rows for brevity | |
# Download button for reconstructed image | |
_, encoded_img = cv2.imencode('.png', reconstructed) | |
st.download_button( | |
"Download Reconstructed Image", | |
encoded_img.tobytes(), | |
"reconstructed.png", | |
"image/png" | |
) | |
# 3D visualization controls | |
st.subheader("3D Frequency Components Visualization") | |
downsample = st.slider( | |
"Downsampling factor for 3D plots:", | |
min_value=1, max_value=20, value=5, | |
help="Controls the resolution of the 3D surface plots. Higher values improve performance but reduce the plot's detail." | |
) | |
# Generate and display 3D plots | |
fig = create_3d_plot(filtered_fft, downsample) | |
st.plotly_chart(fig, use_container_width=True) | |