File size: 5,913 Bytes
a4bb933
 
 
 
1149eec
a4bb933
 
 
22f62c8
a4bb933
 
 
 
 
75e415a
22f62c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75e415a
22f62c8
 
66db58d
22f62c8
 
 
 
 
a4bb933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149eec
 
 
 
22f62c8
 
 
 
 
 
 
a4bb933
 
 
 
22f62c8
a4bb933
 
 
 
 
 
 
 
 
 
 
 
 
 
1149eec
a4bb933
1149eec
 
a4bb933
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import gradio as gr
import torch
from PIL import Image
import numpy as np
import tensorflow as tf
from transformers import SegformerForSemanticSegmentation, AutoFeatureExtractor
import cv2
import json
import os

# Load models
part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars")
damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg")
feature_extractor = AutoFeatureExtractor.from_pretrained("Mohaddz/huggingCars")

# Attempt to load the model
def load_model(model_path):
    print(f"Attempting to load model from: {model_path}")
    print(f"Current working directory: {os.getcwd()}")
    print(f"Files in current directory: {os.listdir('.')}")
    
    try:
        # Attempt 1: Load the entire model
        model = tf.keras.models.load_model(model_path)
        print("Successfully loaded the entire model.")
        return model
    except Exception as e:
        print(f"Failed to load entire model. Error: {str(e)}")
        
        try:
            # Attempt 2: Load model architecture from JSON and weights separately
            with open(model_path.replace('.h5', '.json'), 'r') as json_file:
                model_json = json_file.read()
            model = tf.keras.models.model_from_json(model_json)
            model.load_weights(model_path)
            print("Successfully loaded model from JSON and weights.")
            return model
        except Exception as e:
            print(f"Failed to load model from JSON and weights. Error: {str(e)}")
            
            try:
                # Attempt 3: Load only the weights into a predefined architecture
                input_shape = 33  # Adjust if necessary
                num_classes = 29  # Adjust if necessary
                inputs = tf.keras.Input(shape=(input_shape,))
                x = tf.keras.layers.Dense(256, activation='relu')(inputs)
                x = tf.keras.layers.Dense(128, activation='relu')(x)
                x = tf.keras.layers.Dense(64, activation='relu')(x)
                outputs = tf.keras.layers.Dense(num_classes, activation='sigmoid')(x)
                model = tf.keras.Model(inputs=inputs, outputs=outputs)
                model.load_weights(model_path)
                print("Successfully loaded weights into predefined architecture.")
                return model
            except Exception as e:
                print(f"Failed to load weights into predefined architecture. Error: {str(e)}")
                raise Exception("All attempts to load the model failed.")

# Try to load the model
try:
    dl_model = load_model('improved_car_damage_prediction_model(2).h5')
    print("Model loaded successfully.")
    dl_model.summary()
except Exception as e:
    print(f"Failed to load the model: {str(e)}")
    dl_model = None

# Load parts list
with open('cars117.json', 'r', encoding='utf-8') as f:
    data = json.load(f)
all_parts = sorted(list(set(part for entry in data.values() for part in entry.get('replaced_parts', []))))

def process_image(image):
    # Convert to RGB if it's not
    if image.mode != 'RGB':
        image = image.convert('RGB')
    
    # Prepare input for the model
    inputs = feature_extractor(images=image, return_tensors="pt")
    
    # Get damage segmentation
    with torch.no_grad():
        damage_output = damage_seg_model(**inputs).logits
    damage_features = damage_output.squeeze().detach().numpy()
    
    # Create damage segmentation heatmap
    damage_heatmap = create_heatmap(damage_features)
    damage_heatmap_resized = cv2.resize(damage_heatmap, (image.size[0], image.size[1]))
    
    # Create annotated damage image
    image_array = np.array(image)
    damage_mask = np.argmax(damage_features, axis=0)
    damage_mask_resized = cv2.resize(damage_mask, (image.size[0], image.size[1]), interpolation=cv2.INTER_NEAREST)
    overlay = np.zeros_like(image_array)
    overlay[damage_mask_resized > 0] = [255, 0, 0]  # Red color for damage
    annotated_image = cv2.addWeighted(image_array, 1, overlay, 0.5, 0)
    
    # Process for part prediction and heatmap
    with torch.no_grad():
        part_output = part_seg_model(**inputs).logits
    part_features = part_output.squeeze().detach().numpy()
    part_heatmap = create_heatmap(part_features)
    part_heatmap_resized = cv2.resize(part_heatmap, (image.size[0], image.size[1]))
    
    # Prepare input for damage prediction model
    input_vector = np.concatenate([part_features.mean(axis=(1, 2)), damage_features.mean(axis=(1, 2))])
    
    # Predict parts to replace using the loaded model
    if dl_model is not None:
        prediction = dl_model.predict(np.array([input_vector]))
        predicted_parts = [(all_parts[i], float(prob)) for i, prob in enumerate(prediction[0]) if prob > 0.1]
        predicted_parts.sort(key=lambda x: x[1], reverse=True)
        prediction_text = "\n".join([f"{part}: {prob:.2f}" for part, prob in predicted_parts[:5]])
    else:
        prediction_text = "Model failed to load. Unable to make predictions."
    
    return (Image.fromarray(annotated_image), 
            Image.fromarray(damage_heatmap_resized), 
            Image.fromarray(part_heatmap_resized), 
            prediction_text)

def create_heatmap(features):
    heatmap = np.sum(features, axis=0)
    heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
    heatmap = np.uint8(255 * heatmap)
    return cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)

iface = gr.Interface(
    fn=process_image,
    inputs=gr.Image(type="pil"),
    outputs=[
        gr.Image(type="pil", label="Annotated Damage"),
        gr.Image(type="pil", label="Damage Heatmap"),
        gr.Image(type="pil", label="Part Segmentation Heatmap"),
        gr.Textbox(label="Predicted Parts to Replace")
    ],
    title="Car Damage Assessment",
    description="Upload an image of a damaged car to get an assessment."
)

iface.launch()