Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
from PIL import Image, ImageDraw | |
# Define your labels | |
part_labels = ["front-bumper", "fender", "hood", "door", "trunk"] | |
damage_labels = ["dent", "scratch", "misalignment", "crack"] | |
def mock_inference(image): | |
# This function mocks the segmentation model output | |
# It randomly assigns labels to different parts of the image | |
height, width = image.shape[:2] | |
part_mask = np.random.randint(0, len(part_labels), (height, width)) | |
damage_mask = np.random.randint(0, len(damage_labels), (height, width)) | |
return part_mask, damage_mask | |
def combine_masks(part_mask, damage_mask): | |
part_damage_pairs = [] | |
for part_id, part_name in enumerate(part_labels): | |
for damage_id, damage_name in enumerate(damage_labels): | |
part_binary = (part_mask == part_id) | |
damage_binary = (damage_mask == damage_id) | |
intersection = np.logical_and(part_binary, damage_binary) | |
if np.any(intersection): | |
part_damage_pairs.append((part_name, damage_name)) | |
return part_damage_pairs | |
def create_one_hot_vector(part_damage_pairs): | |
vector = np.zeros(len(part_labels) * len(damage_labels)) | |
for part, damage in part_damage_pairs: | |
if part in part_labels and damage in damage_labels: | |
part_index = part_labels.index(part) | |
damage_index = damage_labels.index(damage) | |
vector_index = part_index * len(damage_labels) + damage_index | |
vector[vector_index] = 1 | |
return vector | |
def visualize_results(image, part_mask, damage_mask): | |
img = Image.fromarray(image) | |
draw = ImageDraw.Draw(img) | |
for i in range(0, img.width, 10): # Sample every 10th pixel for efficiency | |
for j in range(0, img.height, 10): | |
part = part_labels[part_mask[j, i]] | |
damage = damage_labels[damage_mask[j, i]] | |
draw.point((i, j), fill="red") | |
return img | |
def process_image(image): | |
# Mock inference | |
part_mask, damage_mask = mock_inference(image) | |
# Combine masks | |
part_damage_pairs = combine_masks(part_mask, damage_mask) | |
# Create one-hot encoded vector | |
one_hot_vector = create_one_hot_vector(part_damage_pairs) | |
# Visualize results | |
result_image = visualize_results(image, part_mask, damage_mask) | |
return result_image, part_damage_pairs, one_hot_vector.tolist() | |
def gradio_interface(input_image): | |
result_image, part_damage_pairs, one_hot_vector = process_image(input_image) | |
# Convert part_damage_pairs to a string for display | |
damage_description = "\n".join([f"{part} : {damage}" for part, damage in part_damage_pairs]) | |
return result_image, damage_description, str(one_hot_vector) | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.Image(type="numpy"), | |
outputs=[ | |
gr.Image(type="pil", label="Detected Damage (Mocked)"), | |
gr.Textbox(label="Damage Description"), | |
gr.Textbox(label="One-hot Encoded Vector") | |
], | |
title="Car Damage Assessment (Demo)", | |
description="Upload an image of a damaged car to get a mocked assessment of the damage. Note: This is a demo using random predictions, not actual model inference." | |
) | |
iface.launch() |