deletesoon / app.py
Mohaddz's picture
Update app.py
3c0bacb verified
raw
history blame
3.24 kB
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
# Define your labels
part_labels = ["front-bumper", "fender", "hood", "door", "trunk"]
damage_labels = ["dent", "scratch", "misalignment", "crack"]
def mock_inference(image):
# This function mocks the segmentation model output
# It randomly assigns labels to different parts of the image
height, width = image.shape[:2]
part_mask = np.random.randint(0, len(part_labels), (height, width))
damage_mask = np.random.randint(0, len(damage_labels), (height, width))
return part_mask, damage_mask
def combine_masks(part_mask, damage_mask):
part_damage_pairs = []
for part_id, part_name in enumerate(part_labels):
for damage_id, damage_name in enumerate(damage_labels):
part_binary = (part_mask == part_id)
damage_binary = (damage_mask == damage_id)
intersection = np.logical_and(part_binary, damage_binary)
if np.any(intersection):
part_damage_pairs.append((part_name, damage_name))
return part_damage_pairs
def create_one_hot_vector(part_damage_pairs):
vector = np.zeros(len(part_labels) * len(damage_labels))
for part, damage in part_damage_pairs:
if part in part_labels and damage in damage_labels:
part_index = part_labels.index(part)
damage_index = damage_labels.index(damage)
vector_index = part_index * len(damage_labels) + damage_index
vector[vector_index] = 1
return vector
def visualize_results(image, part_mask, damage_mask):
img = Image.fromarray(image)
draw = ImageDraw.Draw(img)
for i in range(0, img.width, 10): # Sample every 10th pixel for efficiency
for j in range(0, img.height, 10):
part = part_labels[part_mask[j, i]]
damage = damage_labels[damage_mask[j, i]]
draw.point((i, j), fill="red")
return img
def process_image(image):
# Mock inference
part_mask, damage_mask = mock_inference(image)
# Combine masks
part_damage_pairs = combine_masks(part_mask, damage_mask)
# Create one-hot encoded vector
one_hot_vector = create_one_hot_vector(part_damage_pairs)
# Visualize results
result_image = visualize_results(image, part_mask, damage_mask)
return result_image, part_damage_pairs, one_hot_vector.tolist()
def gradio_interface(input_image):
result_image, part_damage_pairs, one_hot_vector = process_image(input_image)
# Convert part_damage_pairs to a string for display
damage_description = "\n".join([f"{part} : {damage}" for part, damage in part_damage_pairs])
return result_image, damage_description, str(one_hot_vector)
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Image(type="numpy"),
outputs=[
gr.Image(type="pil", label="Detected Damage (Mocked)"),
gr.Textbox(label="Damage Description"),
gr.Textbox(label="One-hot Encoded Vector")
],
title="Car Damage Assessment (Demo)",
description="Upload an image of a damaged car to get a mocked assessment of the damage. Note: This is a demo using random predictions, not actual model inference."
)
iface.launch()