Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,23 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
from PIL import Image, ImageDraw
|
4 |
-
from transformers import TFSegformerForSemanticSegmentation
|
5 |
-
import tensorflow as tf
|
6 |
-
|
7 |
-
# Load models from Hugging Face
|
8 |
-
part_seg_model = TFSegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars")
|
9 |
-
damage_seg_model = TFSegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSegMohaddz/DamageSeg")
|
10 |
|
11 |
# Define your labels
|
12 |
-
part_labels = ["front-bumper", "fender", "hood", "door", "trunk"
|
13 |
-
damage_labels = ["dent", "scratch", "misalignment", "crack"
|
14 |
-
|
15 |
-
def preprocess_image(image):
|
16 |
-
# Resize the image
|
17 |
-
image = tf.image.resize(image, (512, 512))
|
18 |
-
# Normalize the image
|
19 |
-
image = tf.keras.applications.imagenet_utils.preprocess_input(image)
|
20 |
-
return tf.expand_dims(image, 0) # Add batch dimension
|
21 |
-
|
22 |
-
def inference_seg(model, image):
|
23 |
-
outputs = model(image, training=False)
|
24 |
-
logits = outputs.logits
|
25 |
-
mask = tf.argmax(logits, axis=-1)
|
26 |
-
return mask.numpy().squeeze()
|
27 |
-
|
28 |
-
def inference_part_seg(image):
|
29 |
-
preprocessed_image = preprocess_image(image)
|
30 |
-
return inference_seg(part_seg_model, preprocessed_image)
|
31 |
|
32 |
-
def
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def combine_masks(part_mask, damage_mask):
|
37 |
part_damage_pairs = []
|
38 |
for part_id, part_name in enumerate(part_labels):
|
39 |
-
if part_name == "cars-8I1q":
|
40 |
-
continue
|
41 |
for damage_id, damage_name in enumerate(damage_labels):
|
42 |
-
if damage_name == "etc":
|
43 |
-
continue
|
44 |
part_binary = (part_mask == part_id)
|
45 |
damage_binary = (damage_mask == damage_id)
|
46 |
intersection = np.logical_and(part_binary, damage_binary)
|
@@ -59,22 +36,20 @@ def create_one_hot_vector(part_damage_pairs):
|
|
59 |
return vector
|
60 |
|
61 |
def visualize_results(image, part_mask, damage_mask):
|
62 |
-
img = Image.fromarray(
|
63 |
draw = ImageDraw.Draw(img)
|
64 |
|
65 |
-
for i in range(img.width):
|
66 |
-
for j in range(img.height):
|
67 |
part = part_labels[part_mask[j, i]]
|
68 |
damage = damage_labels[damage_mask[j, i]]
|
69 |
-
|
70 |
-
draw.point((i, j), fill="red")
|
71 |
|
72 |
return img
|
73 |
|
74 |
def process_image(image):
|
75 |
-
#
|
76 |
-
part_mask =
|
77 |
-
damage_mask = inference_damage_seg(image)
|
78 |
|
79 |
# Combine masks
|
80 |
part_damage_pairs = combine_masks(part_mask, damage_mask)
|
@@ -99,12 +74,12 @@ iface = gr.Interface(
|
|
99 |
fn=gradio_interface,
|
100 |
inputs=gr.Image(type="numpy"),
|
101 |
outputs=[
|
102 |
-
gr.Image(type="pil", label="Detected Damage"),
|
103 |
gr.Textbox(label="Damage Description"),
|
104 |
gr.Textbox(label="One-hot Encoded Vector")
|
105 |
],
|
106 |
-
title="Car Damage Assessment",
|
107 |
-
description="Upload an image of a damaged car to get
|
108 |
)
|
109 |
|
110 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
from PIL import Image, ImageDraw
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Define your labels
|
6 |
+
part_labels = ["front-bumper", "fender", "hood", "door", "trunk"]
|
7 |
+
damage_labels = ["dent", "scratch", "misalignment", "crack"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
def mock_inference(image):
|
10 |
+
# This function mocks the segmentation model output
|
11 |
+
# It randomly assigns labels to different parts of the image
|
12 |
+
height, width = image.shape[:2]
|
13 |
+
part_mask = np.random.randint(0, len(part_labels), (height, width))
|
14 |
+
damage_mask = np.random.randint(0, len(damage_labels), (height, width))
|
15 |
+
return part_mask, damage_mask
|
16 |
|
17 |
def combine_masks(part_mask, damage_mask):
|
18 |
part_damage_pairs = []
|
19 |
for part_id, part_name in enumerate(part_labels):
|
|
|
|
|
20 |
for damage_id, damage_name in enumerate(damage_labels):
|
|
|
|
|
21 |
part_binary = (part_mask == part_id)
|
22 |
damage_binary = (damage_mask == damage_id)
|
23 |
intersection = np.logical_and(part_binary, damage_binary)
|
|
|
36 |
return vector
|
37 |
|
38 |
def visualize_results(image, part_mask, damage_mask):
|
39 |
+
img = Image.fromarray(image)
|
40 |
draw = ImageDraw.Draw(img)
|
41 |
|
42 |
+
for i in range(0, img.width, 10): # Sample every 10th pixel for efficiency
|
43 |
+
for j in range(0, img.height, 10):
|
44 |
part = part_labels[part_mask[j, i]]
|
45 |
damage = damage_labels[damage_mask[j, i]]
|
46 |
+
draw.point((i, j), fill="red")
|
|
|
47 |
|
48 |
return img
|
49 |
|
50 |
def process_image(image):
|
51 |
+
# Mock inference
|
52 |
+
part_mask, damage_mask = mock_inference(image)
|
|
|
53 |
|
54 |
# Combine masks
|
55 |
part_damage_pairs = combine_masks(part_mask, damage_mask)
|
|
|
74 |
fn=gradio_interface,
|
75 |
inputs=gr.Image(type="numpy"),
|
76 |
outputs=[
|
77 |
+
gr.Image(type="pil", label="Detected Damage (Mocked)"),
|
78 |
gr.Textbox(label="Damage Description"),
|
79 |
gr.Textbox(label="One-hot Encoded Vector")
|
80 |
],
|
81 |
+
title="Car Damage Assessment (Demo)",
|
82 |
+
description="Upload an image of a damaged car to get a mocked assessment of the damage. Note: This is a demo using random predictions, not actual model inference."
|
83 |
)
|
84 |
|
85 |
iface.launch()
|