Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import torch | |
from PIL import Image, ImageDraw | |
from transformers import SegformerForSemanticSegmentation | |
from torchvision.transforms import Resize, ToTensor, Normalize | |
# Load models from Hugging Face | |
part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars") | |
damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSegMohaddz/DamageSeg") | |
# Define your labels | |
part_labels = ["front-bumper", "fender", "hood", "door", "trunk", "cars-8I1q"] # Add all your part labels | |
damage_labels = ["dent", "scratch", "misalignment", "crack", "etc"] # Add all your damage labels | |
def preprocess_image(image): | |
# Resize and normalize the image | |
transform = Resize((512, 512)) | |
image = transform(Image.fromarray(image)) | |
image = ToTensor()(image) | |
image = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(image) | |
return image.unsqueeze(0) # Add batch dimension | |
def inference_seg(model, image): | |
with torch.no_grad(): | |
outputs = model(image) | |
logits = outputs.logits | |
mask = torch.argmax(logits, dim=1).squeeze().numpy() | |
return mask | |
def inference_part_seg(image): | |
preprocessed_image = preprocess_image(image) | |
return inference_seg(part_seg_model, preprocessed_image) | |
def inference_damage_seg(image): | |
preprocessed_image = preprocess_image(image) | |
return inference_seg(damage_seg_model, preprocessed_image) | |
def combine_masks(part_mask, damage_mask): | |
part_damage_pairs = [] | |
for part_id, part_name in enumerate(part_labels): | |
if part_name == "cars-8I1q": | |
continue | |
for damage_id, damage_name in enumerate(damage_labels): | |
if damage_name == "etc": | |
continue | |
part_binary = (part_mask == part_id) | |
damage_binary = (damage_mask == damage_id) | |
intersection = np.logical_and(part_binary, damage_binary) | |
if np.any(intersection): | |
part_damage_pairs.append((part_name, damage_name)) | |
return part_damage_pairs | |
def create_one_hot_vector(part_damage_pairs): | |
vector = np.zeros(len(part_labels) * len(damage_labels)) | |
for part, damage in part_damage_pairs: | |
if part in part_labels and damage in damage_labels: | |
part_index = part_labels.index(part) | |
damage_index = damage_labels.index(damage) | |
vector_index = part_index * len(damage_labels) + damage_index | |
vector[vector_index] = 1 | |
return vector | |
def visualize_results(image, part_mask, damage_mask): | |
img = Image.fromarray(image) | |
draw = ImageDraw.Draw(img) | |
for i in range(img.width): | |
for j in range(img.height): | |
part = part_labels[part_mask[j, i]] | |
damage = damage_labels[damage_mask[j, i]] | |
if part != "cars-8I1q" and damage != "etc": | |
draw.point((i, j), fill="red") | |
return img | |
def process_image(image): | |
# Perform inference | |
part_mask = inference_part_seg(image) | |
damage_mask = inference_damage_seg(image) | |
# Combine masks | |
part_damage_pairs = combine_masks(part_mask, damage_mask) | |
# Create one-hot encoded vector | |
one_hot_vector = create_one_hot_vector(part_damage_pairs) | |
# Visualize results | |
result_image = visualize_results(image, part_mask, damage_mask) | |
return result_image, part_damage_pairs, one_hot_vector.tolist() | |
def gradio_interface(input_image): | |
result_image, part_damage_pairs, one_hot_vector = process_image(input_image) | |
# Convert part_damage_pairs to a string for display | |
damage_description = "\n".join([f"{part} : {damage}" for part, damage in part_damage_pairs]) | |
return result_image, damage_description, str(one_hot_vector) | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.Image(type="numpy"), | |
outputs=[ | |
gr.Image(type="pil", label="Detected Damage"), | |
gr.Textbox(label="Damage Description"), | |
gr.Textbox(label="One-hot Encoded Vector") | |
], | |
title="Car Damage Assessment", | |
description="Upload an image of a damaged car to get an assessment of the damage." | |
) | |
iface.launch() |