Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from PIL import Image | |
import numpy as np | |
import tensorflow as tf | |
from transformers import SegformerForSemanticSegmentation, AutoFeatureExtractor | |
import cv2 | |
import json | |
import os | |
# Load models | |
part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars") | |
damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg") | |
feature_extractor = AutoFeatureExtractor.from_pretrained("Mohaddz/huggingCars") | |
# Attempt to load the model | |
def load_model(model_path): | |
print(f"Attempting to load model from: {model_path}") | |
print(f"Current working directory: {os.getcwd()}") | |
print(f"Files in current directory: {os.listdir('.')}") | |
try: | |
# Attempt 1: Load the entire model | |
model = tf.keras.models.load_model(model_path) | |
print("Successfully loaded the entire model.") | |
return model | |
except Exception as e: | |
print(f"Failed to load entire model. Error: {str(e)}") | |
try: | |
# Attempt 2: Load model architecture from JSON and weights separately | |
with open(model_path.replace('.h5', '.json'), 'r') as json_file: | |
model_json = json_file.read() | |
model = tf.keras.models.model_from_json(model_json) | |
model.load_weights(model_path) | |
print("Successfully loaded model from JSON and weights.") | |
return model | |
except Exception as e: | |
print(f"Failed to load model from JSON and weights. Error: {str(e)}") | |
try: | |
# Attempt 3: Load only the weights into a predefined architecture | |
input_shape = 33 # Adjust if necessary | |
num_classes = 29 # Adjust if necessary | |
inputs = tf.keras.Input(shape=(input_shape,)) | |
x = tf.keras.layers.Dense(256, activation='relu')(inputs) | |
x = tf.keras.layers.Dense(128, activation='relu')(x) | |
x = tf.keras.layers.Dense(64, activation='relu')(x) | |
outputs = tf.keras.layers.Dense(num_classes, activation='sigmoid')(x) | |
model = tf.keras.Model(inputs=inputs, outputs=outputs) | |
model.load_weights(model_path) | |
print("Successfully loaded weights into predefined architecture.") | |
return model | |
except Exception as e: | |
print(f"Failed to load weights into predefined architecture. Error: {str(e)}") | |
raise Exception("All attempts to load the model failed.") | |
# Try to load the model | |
try: | |
dl_model = load_model('improved_car_damage_prediction_model.h5') | |
print("Model loaded successfully.") | |
dl_model.summary() | |
except Exception as e: | |
print(f"Failed to load the model: {str(e)}") | |
dl_model = None | |
# Load parts list | |
with open('cars117.json', 'r', encoding='utf-8') as f: | |
data = json.load(f) | |
all_parts = sorted(list(set(part for entry in data.values() for part in entry.get('replaced_parts', [])))) | |
def process_image(image): | |
# Convert to RGB if it's not | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
# Prepare input for the model | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
# Get damage segmentation | |
with torch.no_grad(): | |
damage_output = damage_seg_model(**inputs).logits | |
damage_features = damage_output.squeeze().detach().numpy() | |
# Create damage segmentation heatmap | |
damage_heatmap = create_heatmap(damage_features) | |
damage_heatmap_resized = cv2.resize(damage_heatmap, (image.size[0], image.size[1])) | |
# Create annotated damage image | |
image_array = np.array(image) | |
damage_mask = np.argmax(damage_features, axis=0) | |
damage_mask_resized = cv2.resize(damage_mask, (image.size[0], image.size[1]), interpolation=cv2.INTER_NEAREST) | |
overlay = np.zeros_like(image_array) | |
overlay[damage_mask_resized > 0] = [255, 0, 0] # Red color for damage | |
annotated_image = cv2.addWeighted(image_array, 1, overlay, 0.5, 0) | |
# Process for part prediction and heatmap | |
with torch.no_grad(): | |
part_output = part_seg_model(**inputs).logits | |
part_features = part_output.squeeze().detach().numpy() | |
part_heatmap = create_heatmap(part_features) | |
part_heatmap_resized = cv2.resize(part_heatmap, (image.size[0], image.size[1])) | |
# Prepare input for damage prediction model | |
input_vector = np.concatenate([part_features.mean(axis=(1, 2)), damage_features.mean(axis=(1, 2))]) | |
# Predict parts to replace using the loaded model | |
if dl_model is not None: | |
prediction = dl_model.predict(np.array([input_vector])) | |
predicted_parts = [(all_parts[i], float(prob)) for i, prob in enumerate(prediction[0]) if prob > 0.1] | |
predicted_parts.sort(key=lambda x: x[1], reverse=True) | |
prediction_text = "\n".join([f"{part}: {prob:.2f}" for part, prob in predicted_parts[:5]]) | |
else: | |
prediction_text = "Model failed to load. Unable to make predictions." | |
return (Image.fromarray(annotated_image), | |
Image.fromarray(damage_heatmap_resized), | |
Image.fromarray(part_heatmap_resized), | |
prediction_text) | |
def create_heatmap(features): | |
heatmap = np.sum(features, axis=0) | |
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min()) | |
heatmap = np.uint8(255 * heatmap) | |
return cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Image(type="pil", label="Annotated Damage"), | |
gr.Image(type="pil", label="Damage Heatmap"), | |
gr.Image(type="pil", label="Part Segmentation Heatmap"), | |
gr.Textbox(label="Predicted Parts to Replace") | |
], | |
title="Car Damage Assessment", | |
description="Upload an image of a damaged car to get an assessment." | |
) | |
iface.launch() |