deletesoon / app.py
Mohaddz's picture
Update app.py
22f62c8 verified
raw
history blame
5.91 kB
import gradio as gr
import torch
from PIL import Image
import numpy as np
import tensorflow as tf
from transformers import SegformerForSemanticSegmentation, AutoFeatureExtractor
import cv2
import json
import os
# Load models
part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars")
damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg")
feature_extractor = AutoFeatureExtractor.from_pretrained("Mohaddz/huggingCars")
# Attempt to load the model
def load_model(model_path):
print(f"Attempting to load model from: {model_path}")
print(f"Current working directory: {os.getcwd()}")
print(f"Files in current directory: {os.listdir('.')}")
try:
# Attempt 1: Load the entire model
model = tf.keras.models.load_model(model_path)
print("Successfully loaded the entire model.")
return model
except Exception as e:
print(f"Failed to load entire model. Error: {str(e)}")
try:
# Attempt 2: Load model architecture from JSON and weights separately
with open(model_path.replace('.h5', '.json'), 'r') as json_file:
model_json = json_file.read()
model = tf.keras.models.model_from_json(model_json)
model.load_weights(model_path)
print("Successfully loaded model from JSON and weights.")
return model
except Exception as e:
print(f"Failed to load model from JSON and weights. Error: {str(e)}")
try:
# Attempt 3: Load only the weights into a predefined architecture
input_shape = 33 # Adjust if necessary
num_classes = 29 # Adjust if necessary
inputs = tf.keras.Input(shape=(input_shape,))
x = tf.keras.layers.Dense(256, activation='relu')(inputs)
x = tf.keras.layers.Dense(128, activation='relu')(x)
x = tf.keras.layers.Dense(64, activation='relu')(x)
outputs = tf.keras.layers.Dense(num_classes, activation='sigmoid')(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.load_weights(model_path)
print("Successfully loaded weights into predefined architecture.")
return model
except Exception as e:
print(f"Failed to load weights into predefined architecture. Error: {str(e)}")
raise Exception("All attempts to load the model failed.")
# Try to load the model
try:
dl_model = load_model('improved_car_damage_prediction_model.h5')
print("Model loaded successfully.")
dl_model.summary()
except Exception as e:
print(f"Failed to load the model: {str(e)}")
dl_model = None
# Load parts list
with open('cars117.json', 'r', encoding='utf-8') as f:
data = json.load(f)
all_parts = sorted(list(set(part for entry in data.values() for part in entry.get('replaced_parts', []))))
def process_image(image):
# Convert to RGB if it's not
if image.mode != 'RGB':
image = image.convert('RGB')
# Prepare input for the model
inputs = feature_extractor(images=image, return_tensors="pt")
# Get damage segmentation
with torch.no_grad():
damage_output = damage_seg_model(**inputs).logits
damage_features = damage_output.squeeze().detach().numpy()
# Create damage segmentation heatmap
damage_heatmap = create_heatmap(damage_features)
damage_heatmap_resized = cv2.resize(damage_heatmap, (image.size[0], image.size[1]))
# Create annotated damage image
image_array = np.array(image)
damage_mask = np.argmax(damage_features, axis=0)
damage_mask_resized = cv2.resize(damage_mask, (image.size[0], image.size[1]), interpolation=cv2.INTER_NEAREST)
overlay = np.zeros_like(image_array)
overlay[damage_mask_resized > 0] = [255, 0, 0] # Red color for damage
annotated_image = cv2.addWeighted(image_array, 1, overlay, 0.5, 0)
# Process for part prediction and heatmap
with torch.no_grad():
part_output = part_seg_model(**inputs).logits
part_features = part_output.squeeze().detach().numpy()
part_heatmap = create_heatmap(part_features)
part_heatmap_resized = cv2.resize(part_heatmap, (image.size[0], image.size[1]))
# Prepare input for damage prediction model
input_vector = np.concatenate([part_features.mean(axis=(1, 2)), damage_features.mean(axis=(1, 2))])
# Predict parts to replace using the loaded model
if dl_model is not None:
prediction = dl_model.predict(np.array([input_vector]))
predicted_parts = [(all_parts[i], float(prob)) for i, prob in enumerate(prediction[0]) if prob > 0.1]
predicted_parts.sort(key=lambda x: x[1], reverse=True)
prediction_text = "\n".join([f"{part}: {prob:.2f}" for part, prob in predicted_parts[:5]])
else:
prediction_text = "Model failed to load. Unable to make predictions."
return (Image.fromarray(annotated_image),
Image.fromarray(damage_heatmap_resized),
Image.fromarray(part_heatmap_resized),
prediction_text)
def create_heatmap(features):
heatmap = np.sum(features, axis=0)
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
heatmap = np.uint8(255 * heatmap)
return cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs=[
gr.Image(type="pil", label="Annotated Damage"),
gr.Image(type="pil", label="Damage Heatmap"),
gr.Image(type="pil", label="Part Segmentation Heatmap"),
gr.Textbox(label="Predicted Parts to Replace")
],
title="Car Damage Assessment",
description="Upload an image of a damaged car to get an assessment."
)
iface.launch()