Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,85 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
from PIL import Image, ImageDraw
|
4 |
-
|
5 |
-
# Define your labels
|
6 |
-
part_labels = ["front-bumper", "fender", "hood", "door", "trunk"]
|
7 |
-
damage_labels = ["dent", "scratch", "misalignment", "crack"]
|
8 |
-
|
9 |
-
def mock_inference(image):
|
10 |
-
# This function mocks the segmentation model output
|
11 |
-
# It randomly assigns labels to different parts of the image
|
12 |
-
height, width = image.shape[:2]
|
13 |
-
part_mask = np.random.randint(0, len(part_labels), (height, width))
|
14 |
-
damage_mask = np.random.randint(0, len(damage_labels), (height, width))
|
15 |
-
return part_mask, damage_mask
|
16 |
-
|
17 |
-
def combine_masks(part_mask, damage_mask):
|
18 |
-
part_damage_pairs = []
|
19 |
-
for part_id, part_name in enumerate(part_labels):
|
20 |
-
for damage_id, damage_name in enumerate(damage_labels):
|
21 |
-
part_binary = (part_mask == part_id)
|
22 |
-
damage_binary = (damage_mask == damage_id)
|
23 |
-
intersection = np.logical_and(part_binary, damage_binary)
|
24 |
-
if np.any(intersection):
|
25 |
-
part_damage_pairs.append((part_name, damage_name))
|
26 |
-
return part_damage_pairs
|
27 |
-
|
28 |
-
def create_one_hot_vector(part_damage_pairs):
|
29 |
-
vector = np.zeros(len(part_labels) * len(damage_labels))
|
30 |
-
for part, damage in part_damage_pairs:
|
31 |
-
if part in part_labels and damage in damage_labels:
|
32 |
-
part_index = part_labels.index(part)
|
33 |
-
damage_index = damage_labels.index(damage)
|
34 |
-
vector_index = part_index * len(damage_labels) + damage_index
|
35 |
-
vector[vector_index] = 1
|
36 |
-
return vector
|
37 |
-
|
38 |
-
def visualize_results(image, part_mask, damage_mask):
|
39 |
-
img = Image.fromarray(image)
|
40 |
-
draw = ImageDraw.Draw(img)
|
41 |
-
|
42 |
-
for i in range(0, img.width, 10): # Sample every 10th pixel for efficiency
|
43 |
-
for j in range(0, img.height, 10):
|
44 |
-
part = part_labels[part_mask[j, i]]
|
45 |
-
damage = damage_labels[damage_mask[j, i]]
|
46 |
-
draw.point((i, j), fill="red")
|
47 |
-
|
48 |
-
return img
|
49 |
-
|
50 |
-
def process_image(image):
|
51 |
-
# Mock inference
|
52 |
-
part_mask, damage_mask = mock_inference(image)
|
53 |
-
|
54 |
-
# Combine masks
|
55 |
-
part_damage_pairs = combine_masks(part_mask, damage_mask)
|
56 |
-
|
57 |
-
# Create one-hot encoded vector
|
58 |
-
one_hot_vector = create_one_hot_vector(part_damage_pairs)
|
59 |
-
|
60 |
-
# Visualize results
|
61 |
-
result_image = visualize_results(image, part_mask, damage_mask)
|
62 |
-
|
63 |
-
return result_image, part_damage_pairs, one_hot_vector.tolist()
|
64 |
-
|
65 |
-
def gradio_interface(input_image):
|
66 |
-
result_image, part_damage_pairs, one_hot_vector = process_image(input_image)
|
67 |
-
|
68 |
-
# Convert part_damage_pairs to a string for display
|
69 |
-
damage_description = "\n".join([f"{part} : {damage}" for part, damage in part_damage_pairs])
|
70 |
-
|
71 |
-
return result_image, damage_description, str(one_hot_vector)
|
72 |
-
|
73 |
-
iface = gr.Interface(
|
74 |
-
fn=gradio_interface,
|
75 |
-
inputs=gr.Image(type="numpy"),
|
76 |
-
outputs=[
|
77 |
-
gr.Image(type="pil", label="Detected Damage (Mocked)"),
|
78 |
-
gr.Textbox(label="Damage Description"),
|
79 |
-
gr.Textbox(label="One-hot Encoded Vector")
|
80 |
-
],
|
81 |
-
title="Car Damage Assessment (Demo)",
|
82 |
-
description="Upload an image of a damaged car to get a mocked assessment of the damage. Note: This is a demo using random predictions, not actual model inference."
|
83 |
-
)
|
84 |
-
|
85 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|