Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,25 +2,35 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import tensorflow as tf
|
4 |
from PIL import Image, ImageDraw
|
5 |
-
import
|
6 |
|
7 |
-
# Load
|
8 |
-
|
9 |
-
|
10 |
|
11 |
# Define your labels
|
12 |
-
part_labels = ["front-bumper", "fender", "hood", "door", "trunk"] # Add all your part labels
|
13 |
-
damage_labels = ["dent", "scratch", "misalignment", "crack"] # Add all your damage labels
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def inference_part_seg(image):
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
|
20 |
def inference_damage_seg(image):
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
24 |
|
25 |
def combine_masks(part_mask, damage_mask):
|
26 |
part_damage_pairs = []
|
@@ -48,7 +58,7 @@ def create_one_hot_vector(part_damage_pairs):
|
|
48 |
return vector
|
49 |
|
50 |
def visualize_results(image, part_mask, damage_mask):
|
51 |
-
img = Image.fromarray(image)
|
52 |
draw = ImageDraw.Draw(img)
|
53 |
|
54 |
for i in range(img.width):
|
|
|
2 |
import numpy as np
|
3 |
import tensorflow as tf
|
4 |
from PIL import Image, ImageDraw
|
5 |
+
from transformers import TFSegformerForSemanticSegmentation
|
6 |
|
7 |
+
# Load models from Hugging Face
|
8 |
+
part_seg_model = TFSegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars")
|
9 |
+
damage_seg_model = TFSegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg")
|
10 |
|
11 |
# Define your labels
|
12 |
+
part_labels = ["front-bumper", "fender", "hood", "door", "trunk", "cars-8I1q"] # Add all your part labels
|
13 |
+
damage_labels = ["dent", "scratch", "misalignment", "crack", "etc"] # Add all your damage labels
|
14 |
+
|
15 |
+
def preprocess_image(image):
|
16 |
+
# Resize and normalize the image
|
17 |
+
image = tf.image.resize(image, (512, 512))
|
18 |
+
image = tf.keras.applications.imagenet_utils.preprocess_input(image)
|
19 |
+
return image
|
20 |
|
21 |
def inference_part_seg(image):
|
22 |
+
preprocessed_image = preprocess_image(image)
|
23 |
+
outputs = part_seg_model(preprocessed_image, training=False)
|
24 |
+
logits = outputs.logits
|
25 |
+
mask = tf.argmax(logits, axis=-1)
|
26 |
+
return mask.numpy()
|
27 |
|
28 |
def inference_damage_seg(image):
|
29 |
+
preprocessed_image = preprocess_image(image)
|
30 |
+
outputs = damage_seg_model(preprocessed_image, training=False)
|
31 |
+
logits = outputs.logits
|
32 |
+
mask = tf.argmax(logits, axis=-1)
|
33 |
+
return mask.numpy()
|
34 |
|
35 |
def combine_masks(part_mask, damage_mask):
|
36 |
part_damage_pairs = []
|
|
|
58 |
return vector
|
59 |
|
60 |
def visualize_results(image, part_mask, damage_mask):
|
61 |
+
img = Image.fromarray((image * 255).astype(np.uint8))
|
62 |
draw = ImageDraw.Draw(img)
|
63 |
|
64 |
for i in range(img.width):
|