Spaces:
Sleeping
Sleeping
File size: 18,868 Bytes
5775817 0a57d13 5775817 1d18c43 5775817 f5f5355 5775817 e4dc4ec f5f5355 5775817 9a13b83 5775817 9a13b83 1d18c43 9a13b83 5775817 9a13b83 1ecb8af 9a13b83 e6af9be 9a13b83 5775817 5b573ba 5775817 9a13b83 66cecca 5775817 9a13b83 66cecca 9a13b83 66cecca 9a13b83 66cecca 9a13b83 1d18c43 9a13b83 1d18c43 9a13b83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import plotly.figure_factory as ff
from itertools import combinations
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
st.set_page_config(layout="wide")
master_hold = 'https://docs.google.com/spreadsheets/d/15flX6E7lPxu_HC7IOHpB3VEg2Am1AmtxTo9c2y_I-Mw/edit?gid=676575006#gid=676575006'
@st.cache_resource(ttl = 301)
def init_baselines():
sh = gc.open_by_url(master_hold)
worksheet = sh.worksheet('ADPs (model)')
adp_hold = pd.DataFrame(worksheet.get_all_records())
adp_hold = adp_hold[['Player', 'Team', 'Bye', 'Position', 'Position Rank', 'Underdog', 'MFL10', 'Draftkings', 'AVG', 'Projection', 'Proj ADP', 'Diff']]
adp_table = adp_hold.drop_duplicates(subset='Player')
adp_table.replace('', np.nan, inplace=True)
worksheet = sh.worksheet('Stacks (model)')
stacks_hold = pd.DataFrame(worksheet.get_all_records())
stacks_table = stacks_hold.drop_duplicates(subset='Team')
worksheet = sh.worksheet('Player Level Projections')
proj_hold = pd.DataFrame(worksheet.get_all_records())
proj_table = proj_hold[['Player', 'Team', 'Pos', 'Pass Yards', 'PassTD', 'Rush Yards', 'RushTD', 'Receptions', 'Rec Yards', 'RecTD', 'Proj']]
proj_table.replace('', np.nan, inplace=True)
return adp_table, stacks_table, proj_table
adp_table, stacks_table, proj_table = init_baselines()
tab1, tab2, tab3, tab4 = st.tabs(["ADPs and Ranks", "Team Projections", 'Player Projections', "Stack Finder"])
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
with tab1:
col1, col2 = st.columns([1, 5])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
adp_table, stacks_table, proj_table = init_baselines()
site_var1 = st.radio("What site are you playing?", ('Underdog', 'Draftkings'), key='site_var1')
split_var1 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('All Teams', 'Specific Teams'), key='split_var1')
if split_var1 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the analysis?', options = adp_table['Team'].unique(), key='team_var1')
elif split_var1 == 'All Teams':
team_var1 = adp_table.Team.unique().tolist()
pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
if pos_split1 == 'Specific Positions':
pos_var1 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'])
elif pos_split1 == 'All Positions':
pos_var1 = adp_table.Position.unique().tolist()
with col2:
stack_hold_container = st.empty()
working_baselines = adp_table.copy()
if pos_split1 == 'All Positions':
raw_baselines = working_baselines
elif pos_split1 != 'All Positions':
raw_baselines = working_baselines[working_baselines['Position'].str.contains('|'.join(pos_var1))]
if split_var1 == 'All Teams':
raw_baselines = raw_baselines
elif split_var1 != 'All Teams':
raw_baselines = raw_baselines[raw_baselines['Team'].str.contains('|'.join(team_var1))]
display_frame = raw_baselines.copy()
display_frame = display_frame.sort_values(by='Proj ADP', ascending=True)
with stack_hold_container:
stack_hold_container = st.empty()
st.dataframe(display_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').background_gradient(cmap='RdYlGn', subset=['Projection', 'Diff']).format(precision=2), height=750, use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(display_frame),
file_name='NFL_ADPs_Ranks_export.csv',
mime='text/csv',
)
with tab2:
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
adp_table, stacks_table, proj_table = init_baselines()
stack_hold_container = st.empty()
working_baselines = stacks_table.copy()
display_frame = working_baselines.copy()
with stack_hold_container:
stack_hold_container = st.empty()
st.dataframe(display_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Min ADP', 'Avg ADP', 'Max ADP', 'Value Build', 'Value']).format(precision=2), height=750, use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(display_frame),
file_name='NFL_Team_Projections_export.csv',
mime='text/csv',
)
with tab3:
if st.button("Load/Reset Data", key='reset3'):
st.cache_data.clear()
adp_table, stacks_table, proj_table = init_baselines()
stack_hold_container = st.empty()
working_baselines = proj_table.copy()
display_frame = working_baselines.copy()
with stack_hold_container:
stack_hold_container = st.empty()
st.dataframe(display_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=750, use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(display_frame),
file_name='NFL_Player_Projections_export.csv',
mime='text/csv',
)
with tab4:
col1, col2 = st.columns([1, 5])
with col1:
if st.button("Load/Reset Data", key='reset4'):
st.cache_data.clear()
adp_table, stacks_table, proj_table = init_baselines()
site_var4 = st.radio("What site are you playing?", ('Underdog', 'Draftkings'), key='site_var2')
split_var4 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('All Teams', 'Specific Teams'), key='split_var4')
if split_var4 == 'Specific Teams':
team_var4 = st.multiselect('Which teams would you like to include in the analysis?', options = adp_table['Team'].unique(), key='team_var4')
elif split_var4 == 'All Teams':
team_var4 = adp_table.Team.unique().tolist()
pos_split4 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split4')
if pos_split4 == 'Specific Positions':
pos_var4 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'], key='pos_var4')
elif pos_split4 == 'All Positions':
pos_var4 = adp_table.Position.unique().tolist()
if site_var4 == 'Underdog':
adp_dict = dict(zip(adp_table.Player, adp_table.Underdog))
elif site_var4 == 'Draftkings':
adp_dict = dict(zip(adp_table.Player, adp_table.Draftkings))
size_var4 = st.number_input('What size of stacks are you analyzing?', min_value = 3, max_value = 6, step=1)
stack_size = size_var4
cut_var4 = st.radio("Do you want to remove stacks with a negative average value?", ('Yes', 'No'), key='cut_var4')
if cut_var4 == "Yes":
cut_sequence = 1
elif cut_var4 == "No":
cut_sequence = 0
team_dict = dict(zip(adp_table.Player, adp_table.Team))
proj_dict = dict(zip(adp_table.Player, adp_table.Projection))
diff_dict = dict(zip(adp_table.Player, adp_table.Diff))
with col2:
stack_hold_container = st.empty()
if st.button('Run stack analysis'):
comb_list = []
if pos_split4 == 'All Positions':
raw_baselines = adp_table.copy()
elif pos_split4 != 'All Positions':
raw_baselines = adp_table[adp_table['Position'].str.contains('|'.join(pos_var4))]
for cur_team in team_var4:
working_baselines = raw_baselines.copy()
working_baselines = working_baselines[working_baselines['Team'] == cur_team]
order_list = working_baselines['Player']
comb = combinations(order_list, stack_size)
for i in list(comb):
comb_list.append(i)
comb_DF = pd.DataFrame(comb_list)
if stack_size == 3:
comb_DF['Team'] = comb_DF[0].map(team_dict)
comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(3)]).sum(), axis=1)
comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(3)]).mean(), axis=1)
elif stack_size == 4:
comb_DF['Team'] = comb_DF[0].map(team_dict)
comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(4)]).sum(), axis=1)
comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
comb_DF['ADP_4'] = comb_DF[3].map(adp_dict)
comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(4)]).mean(), axis=1)
elif stack_size == 5:
comb_DF['Team'] = comb_DF[0].map(team_dict)
comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(5)]).sum(), axis=1)
comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
comb_DF['ADP_4'] = comb_DF[3].map(adp_dict)
comb_DF['ADP_5'] = comb_DF[4].map(adp_dict)
comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(5)]).mean(), axis=1)
elif stack_size == 6:
comb_DF['Team'] = comb_DF[0].map(team_dict)
comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(6)]).sum(), axis=1)
comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
comb_DF['ADP_4'] = comb_DF[3].map(adp_dict)
comb_DF['ADP_5'] = comb_DF[4].map(adp_dict)
comb_DF['ADP_6'] = comb_DF[5].map(adp_dict)
comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(6)]).mean(), axis=1)
comb_DF = comb_DF.sort_values(by='Proj', ascending=False)
if cut_sequence == 1:
cut_var = 0
if stack_size == 3:
while cut_var <= int(len(comb_DF)):
try:
if int(cut_var) == 0:
cur_proj = float(comb_DF.iat[cut_var,4])
cur_own = 0
elif int(cut_var) >= 1:
check_own = float(comb_DF.iat[cut_var,8])
if check_own < cur_own:
comb_DF = comb_DF.drop([cut_var])
cur_own = cur_own
cut_var = cut_var - 1
comb_DF = comb_DF.reset_index()
comb_DF = comb_DF.drop(['index'], axis=1)
elif check_own >= cur_own:
cur_own = float(comb_DF.iat[cut_var,8])
cut_var = cut_var
cut_var += 1
except:
cut_var += 1
elif stack_size == 4:
while cut_var <= int(len(comb_DF)):
try:
if int(cut_var) == 0:
cur_proj = float(comb_DF.iat[cut_var,5])
cur_own = 0
elif int(cut_var) >= 1:
check_own = float(comb_DF.iat[cut_var,10])
if check_own < cur_own:
comb_DF = comb_DF.drop([cut_var])
cur_own = cur_own
cut_var = cut_var - 1
comb_DF = comb_DF.reset_index()
comb_DF = comb_DF.drop(['index'], axis=1)
elif check_own >= cur_own:
cur_own = float(comb_DF.iat[cut_var,10])
cut_var = cut_var
cut_var += 1
except:
cut_var += 1
elif stack_size == 5:
while cut_var <= int(len(comb_DF)):
try:
if int(cut_var) == 0:
cur_proj = float(comb_DF.iat[cut_var,6])
cur_own = 0
elif int(cut_var) >= 1:
check_own = float(comb_DF.iat[cut_var,12])
if check_own < cur_own:
comb_DF = comb_DF.drop([cut_var])
cur_own = cur_own
cut_var = cut_var - 1
comb_DF = comb_DF.reset_index()
comb_DF = comb_DF.drop(['index'], axis=1)
elif check_own >= cur_own:
cur_own = float(comb_DF.iat[cut_var,12])
cut_var = cut_var
cut_var += 1
except:
cut_var += 1
elif stack_size == 6:
while cut_var <= int(len(comb_DF)):
try:
if int(cut_var) == 0:
cur_proj = float(comb_DF.iat[cut_var,7])
cur_own = 0
elif int(cut_var) >= 1:
check_own = float(comb_DF.iat[cut_var,14])
if check_own < cur_own:
comb_DF = comb_DF.drop([cut_var])
cur_own = cur_own
cut_var = cut_var - 1
comb_DF = comb_DF.reset_index()
comb_DF = comb_DF.drop(['index'], axis=1)
elif check_own >= cur_own:
cur_own = float(comb_DF.iat[cut_var,14])
cut_var = cut_var
cut_var += 1
except:
cut_var += 1
with stack_hold_container:
stack_hold_container = st.empty()
st.dataframe(comb_DF.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(comb_DF),
file_name='NFL_Stack_Options_export.csv',
mime='text/csv',
) |