Insitvideo / app.py
Nancy77's picture
Update app.py
8d3cc25 verified
import os
import streamlit as st
import subprocess
import replicate
import openai
import requests
from PIL import Image
import tempfile
import base64
from dotenv import load_dotenv
from io import BytesIO
from openai import OpenAI
import re
load_dotenv()
OpenAI.api_key = os.getenv("OPENAI_API_KEY")
if not OpenAI.api_key:
raise ValueError("The OpenAI API key must be set in the OPENAI_API_KEY environment variable.")
client = OpenAI()
def execute_ffmpeg_command(command):
try:
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if result.returncode == 0:
print("FFmpeg command executed successfully.")
return result.stdout, result.stderr
else:
print("Error executing FFmpeg command:")
return None, result.stderr
except Exception as e:
print("An error occurred during FFmpeg execution:")
return None, str(e)
def execute_fmpeg_command(command):
try:
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
return result.stdout # Return just the stdout part, not a tuple
except subprocess.CalledProcessError as e:
print(f"FFmpeg command failed with error: {e.stderr.decode()}")
return None
def search_keyword(keyword, frame_texts):
return [index for index, text in st.session_state.frame_texts.items() if keyword.lower() in text.lower()]
frame_numbers = []
# Function to generate description for video frames
def generate_description(base64_frames):
try:
prompt_messages = [
{
"role": "user",
"content": [ " Find the most interesting / impactful portions of a video. The output will be targeted towards social media (like TikTok or Reels) or to news broadcasts. For the provided frames return the most interesting / impactful frames that will hold the interest of an audience and also describe why you chose it. I am trying to fill these frames for a TikTok video. Hence while selecting the frames keep that in mind. You do not have to give me the script of the Tiktok vfideo. Just return the most interesting frames in a sequence that will come for a 10 second tiktok video. List all frame numbers separated by commas at the end like this for eg, Frames : 1,2,4,7,9",
*map(lambda x: {"image": x, "resize": 428}, base64_frames),
],
},
]
response = client.chat.completions.create(
model="gpt-4-vision-preview",
messages=prompt_messages,
max_tokens=3000,
)
description = response.choices[0].message.content
# Use regular expression to find frame numbers
frame_numbers = re.findall(r'Frames\s*:\s*(\d+(?:,\s*\d+)*)', response.choices[0].message.content)
# Convert the string of numbers into a list of integers
if frame_numbers:
frame_numbers = [int(num) for num in frame_numbers[0].split(',')]
else:
frame_numbers = []
print("Frame numbers to extract:", frame_numbers)
return description, frame_numbers
except Exception as e:
print(f"Error in generate_description: {e}")
return None, []
def generate_video(prompt, num_frames):
# Run the text-to-video generation job
output = replicate.run(
"cjwbw/damo-text-to-video:1e205ea73084bd17a0a3b43396e49ba0d6bc2e754e9283b2df49fad2dcf95755",
input={"prompt": prompt, "num_frames": num_frames}
)
# Print the output URL
st.success(f"Video generation successful! Output URL: {output}")
return output
def overlay_text(video_path, dynamic_text, text_effect):
# Define the text filter based on the selected effect
if text_effect == "Vertical scroll":
text_filter = f"drawtext=text='{dynamic_text}':fontsize=24:fontfile=Opensans.ttf:fontcolor=white:box=1:[email protected]:boxborderw=5:x=(w-text_w)/2:y='if(lt(mod(t,10),5*(n-1)/10),(h-text_h)/2+((h+text_h)/10)*mod(t,5), (h-text_h)/2+((h+text_h)/10)*(1-(mod(t,10)/10)))':enable='between(t,0,10*(n-1)/10)"
elif text_effect == "typing":
text_filter = f"drawtext=text='{dynamic_text}':subtitles=typewriter.ass:force_style='FontName=Ubuntu Mono,FontSize=100,PrimaryColour=&H00FFFFFF&'"
elif text_effect == "Horizontal scroll":
text_filter = f"drawtext=text='{dynamic_text}':fontsize=24:fontfile=OpenSans-Regular.ttf:fontcolor=white:box=1:[email protected]:boxborderw=5:x=(w-text_w)/2:y=(h-text_h)/2:enable='between(t,0,10*(n-1)/10)':x='if(lt(t,10*(n-1)/10),(w-text_w)/2-((w+text_w)/10)*mod(t,10),NAN)'"
else:
# Handle the case where none of the conditions are met
print("Invalid text effect selected.")
return None
# Print the FFmpeg command
ffmpeg_command = [
"ffmpeg", "-i", "uploaded_video.mp4",
"-vf", text_filter,
"-c:a", "copy", "-y", "text_overlay_video.mp4"
]
print("FFmpeg Command:", " ".join(ffmpeg_command))
# Run FFmpeg command to overlay text onto the video with the selected effect
result = subprocess.run(ffmpeg_command, capture_output=True, text=True)
# Check if the process was successful
if result.returncode == 0:
# Print the standard output of the command
print("FFmpeg output:", result.stdout)
else:
# Print error message if the process failed
print("Error running FFmpeg command:", result.stderr)
return None
# Example usage
overlay_text("input_video.mp4", "Dynamic Text", "Vertical scroll")
def text_to_video_section():
# Set your Replicate API token
apikey=os.environ["REPLICATE_API_TOKEN"]
st.title("Text-to-Video Generation")
# Input prompt from user
prompt = st.text_input("Enter your prompt:", "batman riding a horse")
# Number of frames input from user
num_frames = st.slider("Select number of frames:", min_value=1, max_value=100, value=50)
# Button to trigger text-to-video generation
if st.button("Generate Video"):
video_path = generate_video(prompt, num_frames)
st.video(video_path)
# Input field for dynamic text
dynamic_text = st.text_input("Enter dynamic text:", "Your dynamic text here")
# Dropdown for selecting text effects
text_effects = ["None", "Vertical scroll", "Typing", "Horizontal scroll"]
selected_effect = st.selectbox("Select text effect:", text_effects)
# Button to overlay text onto the video
if st.button("Add Text"):
if not os.path.exists("uploaded_video.mp4"):
st.error("Please upload a video first.")
else:
if selected_effect != "None":
# Convert selected effect to lowercase
selected_effect_lower = selected_effect.lower()
result_video = overlay_text("uploaded_video.mp4", dynamic_text, selected_effect_lower)
if result_video:
st.video(result_video)
else:
st.error("Please select a text effect.")
def extract_keywords(article):
prompt = f"Read the article provided below ,pick out the 5 important keywords ,add .jpg at the end of the keywords. Do not provide any additional text or explanations. Article: {article}"
completions = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[
{"role": "user", "content": prompt}
],
max_tokens=200,
n=1,
stop=None,
temperature=0.0,
)
# Extract keywords from the OpenAI response
keywords =completions.choices[0].message.content
return keywords
def fetch_images(query):
api_key = os.getenv("serp_key") # Replace "YOUR_API_KEY" with your actual API key
endpoint = f"https://serpapi.com/search?engine=google_images&q={query}&api_key={api_key}"
try:
response = requests.get(endpoint)
data = response.json()
print("API Response:", data)
image_urls = [result['original'] for result in data['images_results']]
return image_urls[:10] # Return only the first 5 images
except Exception as e:
st.error(f"Error fetching images: {e}")
return []
def resize_images(image_files):
resized_image_files = []
for image_file in image_files:
try:
with Image.open(image_file) as img:
# Convert image to RGB mode if it has an alpha channel
if img.mode == 'RGBA':
img = img.convert('RGB')
# Ensure width and height are divisible by 2
width = img.width - (img.width % 2)
height = img.height - (img.height % 2)
resized_img = img.resize((width, height))
resized_image_file = f"{image_file.split('.')[0]}_resized.jpg"
resized_img.save(resized_image_file)
resized_image_files.append(resized_image_file)
except (OSError) as e:
st.warning(f"Skipping image {image_file} as it cannot be identified.")
continue
return resized_image_files
def create_video_slideshow(image_urls):
# Create temporary directory to store image files
temp_dir = "temp_images"
os.makedirs(temp_dir, exist_ok=True)
# Download and save images
image_files = []
for i, image_url in enumerate(image_urls):
image_path = os.path.join(temp_dir, f"image_{i}.jpg")
with open(image_path, 'wb') as f:
response = requests.get(image_url)
f.write(response.content)
image_files.append(image_path)
# Resize images
resized_image_files = resize_images(image_files)
# Run FFmpeg command to create video slideshow
output_video_path = "slideshow_video.mp4"
subprocess.run([
"ffmpeg", "-y", "-framerate", "1", "-i", os.path.join(temp_dir, "image_%d.jpg"), '-c:v', 'libx264','-r', '30',
output_video_path
])
# Cleanup temporary directory
for image_file in image_files:
os.remove(image_file)
for resized_image_file in resized_image_files:
os.remove(resized_image_file)
os.rmdir(temp_dir)
return output_video_path
def add_text_to_video(input_video_path, output_video_path, text_input, text_animation):
# Define text animation filter based on dropdown selection
if text_animation == "fade_in_out":
text_animation_filter = f"drawtext=text='{text_input}':fontsize=24:fontcolor=darkslategray:fontfile=Opensans.ttf:box=1:[email protected]:boxborderw=5:x=w+tw-55*t:y=h-line_h-20:enable='between(t,0,10*(n-1)/10)':x='if(lt(t,10*(n-1)/10),(w-text_w)/2+(w/10)*mod(t,10),NAN)', drawtext=textfile=latest.txt:fontsize=24:fontcolor=white:fontfile=Opensans.ttf:y=h-line_h-20:x=13:box=1:boxcolor=darkorange:boxborderw=8'"
elif text_animation == "slide_from_left":
text_animation_filter = "split[text][tmp];[tmp]crop=w='min(iw\\,iw*max(1,(iw/2-2*t)/iw)):h='min(ih\\,ih*max(1,(ih/2-2*t)/ih)):x=-100+t*300:y=0[tleft];[text]crop=w='min(iw\\,iw*max(1,(iw/2-2*t)/iw)):h='min(ih\\,ih*max(1,(ih/2-2*t)/ih)):x=100-t*300:y=0[tright];[tmp][tleft]overlay=x='min(0,-100+t*300)':y=0[tmp];[tmp][tright]overlay=x='min(0,100-t*300)':y=0"
else:
text_animation_filter = "" # No animation
# Check if text_input is empty or text_animation is "None"
if not text_input or text_animation == "None":
# Return the input video path without any modifications
return input_video_path
print("text filter:",text_animation_filter)
# Run ffmpeg command to overlay text onto the video with animation
cmd = [
"ffmpeg","-y",
"-i", input_video_path,
"-vf", text_animation_filter,
"-c:a", "copy",
output_video_path
]
print(" ".join(cmd))
subprocess.run(cmd)
return output_video_path
def image_to_video_section():
st.title("Image-to-Video Generation")
# Multi-input box for entering the article
article = st.text_area("Enter the article:", "Your article here")
# Define video filter options
video_filter_options=["None","Vintage warm","Grayscale","Invert","Sepia"]
# Add text overlay options outside of the button block
text_input = st.text_input("Enter text to overlay")
text_animation_options = ["None", "fade_in_out", "Horizontal scroll"]
text_animation = st.selectbox("Select text animation", text_animation_options)
print("text applied:",text_input)
# Select video filter
video_filter = st.selectbox("Select video filter", video_filter_options)
# Button to trigger keyword extraction and video generation
if st.button("Generate Video"):
if article.strip() != "":
# Extract keywords using OpenAI API
keywords = extract_keywords(article)
st.write(keywords)
# Fetch images from Google Images based on keywords
image_urls = fetch_images(" ".join(keywords.split()[:10])) # Fetch images based on the first 5 keywords
if image_urls:
st.success("Images fetched successfully!")
# Display the first 5 images
for image_url in image_urls:
st.image(image_url, caption='Image from Google', use_column_width=True)
# Create video slideshow from fetched images
video_path = create_video_slideshow(image_urls)
# Display generated video
st.video(video_path)
#video filter
if video_filter=="Vintage warm":
video_filt="eq=brightness=0.05:saturation=1.5"
elif video_filter=="Grayscale":
video_filt="hue=s=0"
elif video_filter=="Invert":
video_filt="lutrgb='r=negval:g=negval:b=negval'"
elif video_filter=="Sepia":
video_filt="colorchannelmixer=.393:.769:.189:0:.349:.686:.168:0:.272:.534:.131"
else:
video_filt="" #no filter
if not video_filter=="None":
cmdvid=["ffmpeg","-y","-i", video_path,"-vf",video_filt,"-c:a", "copy","videofilter.mp4"]
print(" ".join(cmdvid))
subprocess.run(cmdvid)
st.video("videofilter.mp4")
#text filter
if text_animation == "fade_in_out":
text_animation_filter = f"drawtext=text='{text_input}':fontsize=24:fontcolor=darkslategray:fontfile=Opensans.ttf:box=1:[email protected]:boxborderw=5:x=w+tw-55*t:y=h-line_h-20:enable='between(t,0,10*(n-1)/10)':x='if(lt(t,10*(n-1)/10),(w-text_w)/2+(w/10)*mod(t,10),NAN)', drawtext=textfile=latest.txt:fontsize=24:fontcolor=white:fontfile=Opensans.ttf:y=h-line_h-20:x=13:box=1:boxcolor=darkorange:boxborderw=8'"
elif text_animation == "Horizontal scroll":
text_animation_filter =f"drawtext=text='{text_input}':fontsize=24:fontcolor=darkslategray:fontfile=Opensans.ttf:box=1:[email protected]:boxborderw=5:x=w+tw-55*t:y=h-line_h-20:enable='between(t,0,10*(n-1)/10)':x='if(lt(t,10*(n-1)/10),(w-text_w)/2+(w/10)*mod(t,10),NAN)', drawtext=textfile=latest.txt:fontsize=24:fontcolor=white:fontfile=Opensans.ttf:y=h-line_h-20:x=13:box=1:boxcolor=darkorange:boxborderw=8'"
else:
text_animation_filter = "" # No animation
# Check if text_input is empty or text_animation is "None"
if not text_input or text_animation == "None":
# Return the input video path without any modifications
return video_path
print("text filter:",text_animation_filter)
# Run ffmpeg command to overlay text onto the video with animation
cmd = [
"ffmpeg","-y",
"-i", video_path,
"-vf", text_animation_filter,
"-c:a", "copy",
"output_video.mp4"
]
print(" ".join(cmd))
subprocess.run(cmd)
#return output_video_path
# Add text overlay to the generated video
st.video("output_video.mp4")
else:
st.error("No images found for the given keywords.")
else:
st.warning("Please enter an article before generating the video.")
def frame_extraction():
st.title("Insightly Video")
# stream_url = st.text_input("Enter the live stream URL (YouTube, Twitch, etc.):")
# keyword = st.text_input("Enter a keyword to filter the frames (optional):")
uploaded_video = st.file_uploader("Or upload a video file (MP4):", type=["mp4"])
# Slider to select the number of seconds for extraction
seconds = st.slider("Select the number of seconds for extraction:", min_value=1, max_value=60, value=10)
extract_frames_button = st.button("Extract Frames")
if uploaded_video is not None and extract_frames_button:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmpfile:
tmpfile.write(uploaded_video.getvalue())
video_file_path = tmpfile.name
ffmpeg_command = [
'ffmpeg', # Input stream URL
'-i', video_file_path,
'-t', str(seconds), # Duration to process the input (selected seconds)
'-vf', 'fps=1', # Extract one frame per second
'-f', 'image2pipe', # Output format as image2pipe
'-c:v', 'mjpeg', # Codec for output video
'-an', # No audio
'-'
]
ffmpeg_output = execute_fmpeg_command(ffmpeg_command)
if ffmpeg_output:
st.write("Frames Extracted:")
frame_bytes_list = ffmpeg_output.split(b'\xff\xd8')[1:] # Correct splitting for JPEG frames
n_frames = len(frame_bytes_list)
base64_frames = [base64.b64encode(b'\xff\xd8' + frame_bytes).decode('utf-8') for frame_bytes in frame_bytes_list]
frame_dict = {}
for idx, frame_base64 in enumerate(base64_frames):
col1, col2 = st.columns([3, 2])
with col1:
frame_bytes = base64.b64decode(frame_base64)
frame_dict[idx + 1] = frame_bytes
st.image(Image.open(BytesIO(frame_bytes)), caption=f'Frame {idx + 1}', use_column_width=True)
with col2:
pass
# Here, you might want to process combined_analysis_results to summarize or just display them
# Extract audio
audio_command = [
'ffmpeg',
'-i', video_file_path,
'-t', str(seconds),
'-vf', 'fps=1', # Input stream URL
'-vn', # Ignore the video for the audio output
'-acodec', 'libmp3lame', # Set the audio codec to MP3 # Duration for the audio extraction (selected seconds)
'-f', 'mp3', # Output format as MP3
'-'
]
audio_output, _ = execute_ffmpeg_command(audio_command)
st.write("Extracted Audio:")
audio_tempfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
audio_tempfile.write(audio_output)
audio_tempfile.close()
st.audio(audio_output, format='audio/mpeg', start_time=0)
# Get consolidated description for all frames
if ffmpeg_output:
description, frame_numbers = generate_description(base64_frames)
if description:
st.header("Frame Description:")
st.write(description)
else:
st.write("Failed to generate description.")
if frame_numbers:
print("Frame numbers to extract:", frame_numbers) # Check frame numbers
# Create a mapping from original frame numbers to sequential numbers
frame_mapping = {}
new_frame_numbers = []
for idx, frame_number in enumerate(sorted(frame_numbers)):
frame_mapping[frame_number] = idx + 1
new_frame_numbers.append(idx + 1)
print("New frame numbers:", new_frame_numbers)
print("Frame mapping:", frame_mapping)
# Create a temporary directory to store images
with tempfile.TemporaryDirectory() as temp_dir:
image_paths = []
for frame_number in frame_numbers:
if frame_number in frame_dict:
frame_path = os.path.join(temp_dir, f'frame_{frame_mapping[frame_number]:03}.jpg') # Updated file naming
image_paths.append(frame_path)
with open(frame_path, 'wb') as f:
f.write(frame_dict[frame_number])
# Once all selected frames are saved as images, create a video from them using FFmpeg
video_output_path = os.path.join(temp_dir, 'output.mp4')
framerate = 1 # Adjust framerate based on the number of frames
ffmpeg_command = [
'ffmpeg',
'-framerate', str(framerate), # Set framerate based on the number of frames
'-i', os.path.join(temp_dir, 'frame_%03d.jpg'), # Input pattern for all frame files
'-c:v', 'libx264',
'-pix_fmt', 'yuv420p',
video_output_path
]
print("FFmpeg command:", ' '.join(ffmpeg_command)) # Debug FFmpeg command
subprocess.run(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# Display or provide a download link for the created video
st.header("Final Video")
st.video(video_output_path)
else:
st.write(" ")
def main():
# st.title("Video Uploader and Player")
# uploaded_file = st.file_uploader("Upload a video", type=["mp4", "mov"])
# if uploaded_file is not None:
# Save the uploaded video to disk
# with open("uploaded_video.mp4", "wb") as f:
# f.write(uploaded_file.getbuffer())
# st.success("Video uploaded successfully!")
# Display the uploaded video
# st.video("uploaded_video.mp4")
# Add accordion menu for text to video and image to video sections
menu_selection = st.sidebar.selectbox("Select:", ["Text to video", "Image to video","Frame Extraction"])
if menu_selection == "Text to video":
text_to_video_section()
elif menu_selection == "Image to video":
image_to_video_section()
elif menu_selection == "Frame Extraction":
frame_extraction()
if __name__ == "__main__":
main()