NightRaven109's picture
Upload 73 files
6ecc7d4 verified
raw
history blame
13.3 kB
import os
import numpy as np
import cv2
import glob
import math
import yaml
import random
from collections import OrderedDict
import torch
import torch.nn.functional as F
from basicsr.data.transforms import augment
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.utils import DiffJPEG, USMSharp, img2tensor, tensor2img
from basicsr.utils.img_process_util import filter2D
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast, adjust_hue, adjust_saturation,
normalize, rgb_to_grayscale)
cur_path = os.path.dirname(os.path.abspath(__file__))
def ordered_yaml():
"""Support OrderedDict for yaml.
Returns:
yaml Loader and Dumper.
"""
try:
from yaml import CDumper as Dumper
from yaml import CLoader as Loader
except ImportError:
from yaml import Dumper, Loader
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
def dict_representer(dumper, data):
return dumper.represent_dict(data.items())
def dict_constructor(loader, node):
return OrderedDict(loader.construct_pairs(node))
Dumper.add_representer(OrderedDict, dict_representer)
Loader.add_constructor(_mapping_tag, dict_constructor)
return Loader, Dumper
def opt_parse(opt_path):
with open(opt_path, mode='r') as f:
Loader, _ = ordered_yaml()
opt = yaml.load(f, Loader=Loader)
return opt
class RealESRGAN_degradation(object):
def __init__(self, opt_path='', device='cpu'):
self.opt = opt_parse(opt_path)
self.device = device #torch.device('cpu')
optk = self.opt['kernel_info']
# blur settings for the first degradation
self.blur_kernel_size = optk['blur_kernel_size']
self.kernel_list = optk['kernel_list']
self.kernel_prob = optk['kernel_prob']
self.blur_sigma = optk['blur_sigma']
self.betag_range = optk['betag_range']
self.betap_range = optk['betap_range']
self.sinc_prob = optk['sinc_prob']
# blur settings for the second degradation
self.blur_kernel_size2 = optk['blur_kernel_size2']
self.kernel_list2 = optk['kernel_list2']
self.kernel_prob2 = optk['kernel_prob2']
self.blur_sigma2 = optk['blur_sigma2']
self.betag_range2 = optk['betag_range2']
self.betap_range2 = optk['betap_range2']
self.sinc_prob2 = optk['sinc_prob2']
# a final sinc filter
self.final_sinc_prob = optk['final_sinc_prob']
self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21
self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect
self.pulse_tensor[10, 10] = 1
self.jpeger = DiffJPEG(differentiable=False).to(self.device)
self.usm_shaper = USMSharp().to(self.device)
def color_jitter_pt(self, img, brightness, contrast, saturation, hue):
fn_idx = torch.randperm(4)
for fn_id in fn_idx:
if fn_id == 0 and brightness is not None:
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
img = adjust_brightness(img, brightness_factor)
if fn_id == 1 and contrast is not None:
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
img = adjust_contrast(img, contrast_factor)
if fn_id == 2 and saturation is not None:
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
img = adjust_saturation(img, saturation_factor)
if fn_id == 3 and hue is not None:
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
img = adjust_hue(img, hue_factor)
return img
def random_augment(self, img_gt):
# random horizontal flip
img_gt, status = augment(img_gt, hflip=True, rotation=False, return_status=True)
"""
# random color jitter
if np.random.uniform() < self.opt['color_jitter_prob']:
jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)
img_gt = img_gt + jitter_val
img_gt = np.clip(img_gt, 0, 1)
# random grayscale
if np.random.uniform() < self.opt['gray_prob']:
#img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2GRAY)
img_gt = cv2.cvtColor(img_gt, cv2.COLOR_RGB2GRAY)
img_gt = np.tile(img_gt[:, :, None], [1, 1, 3])
"""
# BGR to RGB, HWC to CHW, numpy to tensor
img_gt = img2tensor([img_gt], bgr2rgb=False, float32=True)[0].unsqueeze(0)
return img_gt
def random_kernels(self):
# ------------------------ Generate kernels (used in the first degradation) ------------------------ #
kernel_size = random.choice(self.kernel_range)
if np.random.uniform() < self.sinc_prob:
# this sinc filter setting is for kernels ranging from [7, 21]
if kernel_size < 13:
omega_c = np.random.uniform(np.pi / 3, np.pi)
else:
omega_c = np.random.uniform(np.pi / 5, np.pi)
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
else:
kernel = random_mixed_kernels(
self.kernel_list,
self.kernel_prob,
kernel_size,
self.blur_sigma,
self.blur_sigma, [-math.pi, math.pi],
self.betag_range,
self.betap_range,
noise_range=None)
# pad kernel
pad_size = (21 - kernel_size) // 2
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
# ------------------------ Generate kernels (used in the second degradation) ------------------------ #
kernel_size = random.choice(self.kernel_range)
if np.random.uniform() < self.sinc_prob2:
if kernel_size < 13:
omega_c = np.random.uniform(np.pi / 3, np.pi)
else:
omega_c = np.random.uniform(np.pi / 5, np.pi)
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
else:
kernel2 = random_mixed_kernels(
self.kernel_list2,
self.kernel_prob2,
kernel_size,
self.blur_sigma2,
self.blur_sigma2, [-math.pi, math.pi],
self.betag_range2,
self.betap_range2,
noise_range=None)
# pad kernel
pad_size = (21 - kernel_size) // 2
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
# ------------------------------------- sinc kernel ------------------------------------- #
if np.random.uniform() < self.final_sinc_prob:
kernel_size = random.choice(self.kernel_range)
omega_c = np.random.uniform(np.pi / 3, np.pi)
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
sinc_kernel = torch.FloatTensor(sinc_kernel)
else:
sinc_kernel = self.pulse_tensor
kernel = torch.FloatTensor(kernel)
kernel2 = torch.FloatTensor(kernel2)
return kernel, kernel2, sinc_kernel
@torch.no_grad()
def degrade_process(self, img_gt, resize_bak=False):
img_gt = self.random_augment(img_gt)
kernel1, kernel2, sinc_kernel = self.random_kernels()
img_gt, kernel1, kernel2, sinc_kernel = img_gt.to(self.device), kernel1.to(self.device), kernel2.to(self.device), sinc_kernel.to(self.device)
#img_gt = self.usm_shaper(img_gt) # shaper gt
ori_h, ori_w = img_gt.size()[2:4]
#scale_final = random.randint(4, 16)
scale_final = 4
# ----------------------- The first degradation process ----------------------- #
# blur
out = filter2D(img_gt, kernel1)
# random resize
updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob'])[0]
if updown_type == 'up':
scale = np.random.uniform(1, self.opt['resize_range'][1])
elif updown_type == 'down':
scale = np.random.uniform(self.opt['resize_range'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, scale_factor=scale, mode=mode)
# noise
gray_noise_prob = self.opt['gray_noise_prob']
if np.random.uniform() < self.opt['gaussian_noise_prob']:
out = random_add_gaussian_noise_pt(
out, sigma_range=self.opt['noise_range'], clip=True, rounds=False, gray_prob=gray_noise_prob)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.opt['poisson_scale_range'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
# ----------------------- The second degradation process ----------------------- #
# blur
if np.random.uniform() < self.opt['second_blur_prob']:
out = filter2D(out, kernel2)
# random resize
updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob2'])[0]
if updown_type == 'up':
scale = np.random.uniform(1, self.opt['resize_range2'][1])
elif updown_type == 'down':
scale = np.random.uniform(self.opt['resize_range2'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out, size=(int(ori_h / scale_final * scale), int(ori_w / scale_final * scale)), mode=mode)
# noise
gray_noise_prob = self.opt['gray_noise_prob2']
if np.random.uniform() < self.opt['gaussian_noise_prob2']:
out = random_add_gaussian_noise_pt(
out, sigma_range=self.opt['noise_range2'], clip=True, rounds=False, gray_prob=gray_noise_prob)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.opt['poisson_scale_range2'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression + the final sinc filter
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
# as one operation.
# We consider two orders:
# 1. [resize back + sinc filter] + JPEG compression
# 2. JPEG compression + [resize back + sinc filter]
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
if np.random.uniform() < 0.5:
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, size=(ori_h // scale_final, ori_w // scale_final), mode=mode)
out = filter2D(out, sinc_kernel)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
else:
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, size=(ori_h // scale_final, ori_w // scale_final), mode=mode)
out = filter2D(out, sinc_kernel)
if np.random.uniform() < self.opt['gray_prob']:
out = rgb_to_grayscale(out, num_output_channels=1)
if np.random.uniform() < self.opt['color_jitter_prob']:
brightness = self.opt.get('brightness', (0.5, 1.5))
contrast = self.opt.get('contrast', (0.5, 1.5))
saturation = self.opt.get('saturation', (0, 1.5))
hue = self.opt.get('hue', (-0.1, 0.1))
out = self.color_jitter_pt(out, brightness, contrast, saturation, hue)
if resize_bak:
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, size=(ori_h, ori_w), mode=mode)
# clamp and round
img_lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
return img_gt, img_lq